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Abstract

The computability-theoretic and reverse mathematical aspects of various combinatorial principles, such as

König’s Lemma and Ramsey’s Theorem, have received a great deal of attention and are active areas of

research. We carry on this study of effective combinatorics by analyzing various partition theorems (such as

Ramsey’s Theorem) with the aim of understanding the complexity of solutions to computable instances in

terms of the Turing degrees and the arithmetical hierarchy.

Our main focus is the study of the effective content of two partition theorems allowing infinitely many col-

ors: the Canonical Ramsey Theorem of Erdös and Rado, and the Regressive Function Theorem of Kanamori

and McAloon. Our results on the complexity of solutions rely heavily on a new, purely inductive, proof

of the Canonical Ramsey Theorem. This study unearths some interesting relationships between these two

partition theorems, Ramsey’s Theorem, and Konig’s Lemma, and these connections will be emphasized.

We also study Ramsey degrees, i.e. those Turing degrees which are able to compute homogeneous sets for

every computable 2-coloring of pairs of natural numbers, in an attempt to further understand the effective

content of Ramsey’s Theorem for exponent 2. We establish some new results about these degrees, and obtain

as a corollary the nonexistence of a “universal” computable 2-coloring of pairs of natural numbers.
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Chapter 1

Introduction

1.1 Logic and Combinatorics

The connections between mathematical logic and combinatorics have a rich history. This dissertation focuses

on one aspect of this relationship: understanding the strength, measured using the tools of computability

theory and reverse mathematics, of various partition theorems. To set the stage, recall two of the most

fundamental combinatorial principles, Ramsey’s Theorem and König’s Lemma. We denote the set of natural

numbers by ω and use the notation [A]n to denote the set of subsets of A of size n.

• Ramsey’s Theorem [23]: For every n, p ≥ 1 and every f : [ω]n → p, there exists an infinite H ⊆ ω

such that f is constant on [H]n. An H such that f is constant on [H]n is called homogeneous for f .

• König’s Lemma: Every infinite bounded tree has a branch.

König’s Lemma and Ramsey’s Theorem are intimately related, as several proofs of partition theorems

in set theory (such as Ramsey’s Theorem) utilize paths through trees, and vice-versa. In the realm of large

cardinals, those cardinals on which the appropriate analogue of Ramsey’s Theorem hold are exactly those

on which the appropriate analogue of König’s Lemma hold (see [16, Theorem 7.8]).

Another interesting thread in the investigation of the logical strength of partition theorems is the use

of infinitary methods to prove finite combinatorial results. One can use Ramsey’s Theorem together with

König’s Lemma to derive the finite version of Ramsey’s Theorem. This may seem like a curiosity since

the finite version of Ramsey’s Theorem can be proved using nothing but basic finite combinatorics, but

the connection runs more deeply. In 1977, Paris and Harrington [21] proved that a natural finite partition

theorem stronger than the finite version of Ramsey’s Theorem is true but not provable in Peano Arithmetic,

an important system which seems to correspond to our notion of finitary proof. Hence, any proof of this finite

combinatorial result needs, in a precise sense, to use infinite sets. More recently, Kanamori and McAloon
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[17] found another, perhaps more natural, finite partition theorem about regressive functions which is true

but not provable in Peano Arithmetic.

Our interest is in the effective content of partition theorems such as Ramsey’s Theorem. For example,

we may ask whether every computable f : [ω]2 → 2 must have a computable homogeneous set. If the answer

is negative, we may wonder about the complexity of homogeneous sets for computable f : [ω]2 → 2 as

measured using the tools of computability theory, such as the Turing degrees and the arithmetic hierarchy.

From a related but distinctly different perspective, we may seek to understand the strength of set existence

axioms inherent in Ramsey’s Theorem, as measured by tools of reverse mathematics. We might expect that

the above mentioned relationship between partitions theorems and König’s Lemma manifests itself in their

corresponding computability-theoretic or reverse mathematical strengths.

In Chapter 2, we begin by discussing the various combinatorial principles that play a key role in this

dissertation. We give proofs of König’s Lemma and Ramsey’s Theorem which will be relevant to later

chapters, and summarize known results about the computability-theoretic and reverse mathematical strength

of these principles. We also introduce the Canonical Ramsey Theorem and the Regressive Function Theorem.

In Chapter 3, we analyze the Canonical Ramsey Theorem, a generalization of Ramsey’s Theorem due to

Erdös and Rado in which the number of colors need not be finite. Known proofs of this result make use of

Ramsey’s Theorem (using Ramsey’s Theorem for exponent 2n to obtain the Canonical Ramsey Theorem for

exponent n), but we give a new purely inductive proof. Analyzing this proof, we provide upper bounds on

the Turing degrees and position in the arithmetical hierarchy of canonical sets for computable partitions.

In Chapter 4, we analyze the Regressive Function Theorem of Kanamori and McAloon, whose finitary

version was mentioned above. This result is an easy consequence of the Canonical Ramsey Theorem, so

results on the Turing degrees and position in the arithmetical hierarchy of solutions for computable regressive

functions give lower bounds for the Canonical Ramsey Theorem, aside from having intrinsic interest. We

succeed in giving a sharp characterization of solutions for computable regressive functions for all exponents.

In Chapter 5, we study (s-)Ramsey degrees, i.e. those Turing degrees which are able to compute infinite

homogeneous sets for computable (stable) f : [ω]2 → 2. We show that these degrees are meager and have

measure 0. We also improve various known results, and show that there is no “universal” computable

partition, in contrast to the situation for Weak König’s Lemma, the Canonical Ramsey Theorem, and the

Regressive Function Theorem.

In Chapter 6, we study generalized notions of cohesiveness. Hummel and Jockusch studied higher ana-

logues of cohesiveness for Ramsey’s Theorem, and we initiate a study of analogues of cohesivness for the

Canonical Ramsey Theorem and the Regressive Function Theorem.
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In Chapter 7, we study the above partition theorems from the viewpoint of reverse mathematics. We

show that many of the above principles are equivalent to ACA0 over RCA0, but a few special cases arise when

considering exponent 1 and when quantifying over all exponents.

1.2 Notation and Conventions

We record here the notation and conventions that will be used throughout the dissertation.

Notation 1.2.1.

(1) ω denotes the set of natural numbers and P(ω) denotes the set of subsets of ω. If we are working in a

model M of a subsystem of second-order arithmetic, we let N denote the set of natural numbers in the

sense of M.

(2) We identify each n ∈ ω with its set of predecessors, so n = {0, 1, . . . , n− 1}.

(3) a,b,c,d,e,i,j,k,l,m,n,p,q,r,s,t,α,β,. . . will denote elements of ω (and sometimes −1).

(4) x,y,z,u,. . . will denote finite subsets of ω. We identify a finite subset of ω of size n with the n-tuple

listing x in increasing order. When dealing with 1-element sets, we identify a and {a}.

(5) X,Y ,Z,S,T ,. . . will denote subsets of ω.

(6) A,B,C,H,I,J ,M ,V ,. . . will denote infinite subsets of ω.

(7) Given X ⊆ ω, let X<ω be the set of finite strings of elements of X.

(8) σ, τ, . . . will denote elements of ω<ω. The empty string is denoted by ε. We identify a ∈ ω with the

corresponding string in ω<ω of length 1.

(9) D,F ,M,O,U , . . . will denote subsets of P(ω).

(10) If x is a finite subset of ω of size n, and i < n, we denote the (i+1)st element of x, in increasing order,

by x(i).

(11) Suppose that σ, τ ∈ ω<ω. We write σ ⊆ τ to mean that τ extends σ, and we let σ ∗ τ be the

concatenation of σ and τ . We let |σ| be the length of σ. If i < |σ|, we let σ(i) be the (i + 1)st element

of σ.

(12) We identify each X ⊆ ω with its characteristic function, and hence we identify P(ω) with 2ω.
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(13) If σ ∈ 2<ω and X ⊆ ω, we write σ ⊂ X to mean that (the characteristic function of) X extends σ.

(14) If σ ∈ 2<ω, we let I(σ) = {X ⊆ ω : σ ⊂ X} be the basic open neighborhood of 2ω determined by σ.

(15) Suppose X, Y ⊆ ω. Let X\Y = {a ∈ ω : a ∈ X and a /∈ Y }, and let X = ω\X. Let X ⊕ Y be the set

Z ⊆ ω defined by Z(2n) = X(n) and Z(2n + 1) = Y (n).

(16) Suppose that X, Y ⊆ ω. We write X ⊆∗ Y to mean that X\Y is finite. We write X =∗ Y to mean

that X ⊆∗ Y and Y ⊆∗ X.

(17) Given Z ⊆ ω and n ≥ 1, we let [Z]n = {x ⊆ Z : |x| = n}.

(18) If x ⊆ ω is finite and a ∈ ω, we write x < a if a is greater than every element of x. If x ⊆ ω is finite

and Z ⊆ ω is nonempty, we write x < Z if every element of x is less than every element of Z.

(19) Suppose that n ≥ 1, B is infinite, f : [B]n+1 → ω, x ∈ [B]n, and a ∈ B. When we write f(x, a), we

implicitly assume that x < a, and we let f(x, a) = f(x ∪ {a}). Also, if n = 1 and a, b ∈ B, when we

write f(a, b), we implicitly assume that a < b, and we let f(a, b) = f({a, b}).

(20) Let 〈·〉 denote a fixed effective bijective function from ω<ω to ω.

(21) Let c, i ∈ ω. Fix a0, a1, . . . , an−1 ∈ ω such that c = 〈a0, a1, . . . , an−1〉. If i < n, we let (c)i = ai, and if

i ≥ n, we let (c)i = 0.

(22) Let {ϕe}e∈ω be an effective listing of the partial Turing functionals.

(23) a,b,c,. . . will denote Turing degrees.

(24) If X ⊆ ω, we denote the Turing degree of X by deg(X).

(25) Let λ be Lebesgue measure on 2ω.

(26) Given an infinite set A, let pA : ω → ω be the function defined by letting pA(n) be the (n+1)st element

of A in increasing order.

We make use of the following ordering in several constructions.

Definition 1.2.2. For each n ∈ ω, we define a total ordering <n of [ω]n as follows. For x, y ∈ [ω]n, we let

x <n y if and only if x 6= y and x(i) < y(i), where i is the greatest integer less than n with x(i) 6= y(i).

Definition 1.2.3. Given p ≥ 1, let π1 : ω × p → ω denote the projection onto the first coordinate and

π2 : ω × p→ p denote projection onto the second coordinate.
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Chapter 2

Background and Motivation

König’s Lemma and Ramsey’s Theorem stand out as two of the most important and far-reaching combinato-

rial principles about ω. There has been an extensive study of the strength of these combinatorial principles

using the tools of computability theory and reverse mathematics. From the viewpoint of computability

theory (see [29] for the necessary background information about computability theory), one may ask where

solutions to computable instances of these problems lie either in the Turing degrees or the arithmetical

hierarchy. Also, one may seek to classify the strength of these statements with respect to the reverse math-

ematics hierarchy (see [28] for the necessary background information about reverse mathematics). Before

embarking on our analysis of various partition theorems on ω, we will discuss some of the known results for

König’s Lemma and Ramsey’s Theorem.

2.1 Effective Analysis of König’s Lemma

To analyze König’s Lemma, we first need a way to talk about trees. For our purposes, it is important to

distinguish between arbitrary bounded trees and computably bounded trees.

Definition 2.1.1.

(1) A tree is a subset T of ω<ω such that for all σ ∈ T , if τ ∈ ω<ω and τ ⊆ σ, then τ ∈ T .

(2) If T is a tree and S ⊆ T is also a tree, we say that S is a subtree of T .

(3) A tree T is bounded if there exists h : ω → ω such that for all σ ∈ T and k ∈ ω with |σ| > k, we have

σ(k) ≤ h(k). If there exists such an h which is computable, we say that T is computably bounded.

(4) A branch of a tree T is a function f : ω → ω such that f � n ∈ T for all n ∈ ω.

Theorem 2.1.2 (König’s Lemma). Every infinite bounded tree has a branch.
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Proof. Let T be an infinite tree and let h : ω → ω be such that σ(k) ≤ h(k) whenever σ ∈ T and |σ| > k.

We define a sequence σ0 ( σ1 ( σ2 ( . . . inductively such that σk ∈ ω<ω and |σk| = k for all k ∈ ω. We

maintain the invariant that {τ ∈ T : σk ⊆ τ} is infinite. Let σ0 = ε be the empty string. Suppose that we

have defined σk and that {τ ∈ T : σk ⊆ τ} is infinite. If {τ ∈ T : σk ∗ a ⊆ τ} is finite for all a ≤ h(k),

then {τ ∈ T : σk ⊆ τ} = {σk} ∪
⋃

a≤h(k){τ ∈ T : σk ∗ a ⊆ τ} is finite, a contradiction. Thus, we may let

σk+1 = σk ∗ a for the least a ≤ h(k) such that {τ ∈ T : σk ∗ a ⊆ τ} is infinite.

Define f : ω → ω be letting f(k) = σk+1(k). Then f is a branch of T .

An effective analysis of König’s Lemma depends on both the complexity of f and the complexity of the

bound. We will mostly be concerned with subtrees of 2<ω (that is, trees which are bounded by h(k) = 1). It

is straightforward to effectively code computably bounded computable trees by computable subtrees of 2<ω,

so for our purposes there is no loss in restricting attention to the following case.

Corollary 2.1.3 (Weak König’s Lemma). Every infinite subtree of 2<ω has a branch.

A simple analysis of the proof of König’s Lemma shows that every computable infinite subtree of 2<ω

has a 0′′-computable branch. However, instead of asking whether the sets {τ ∈ T : σk ∗ a ⊆ τ} are infinite

(a 2-quantifier question), we may ask whether {τ ∈ T : σk ∗ a ⊆ τ and |τ | = m} is nonempty for every m (a

1-quantifier question due to the bound). This leads to the following:

Theorem 2.1.4 (Kreisel [18]). Every computable infinite subtree of 2<ω has a 0′-computable branch.

Hence, every computable infinite subtree of 2<ω has a ∆0
2 branch.

Definition 2.1.5. Let a and b be Turing degrees. We write a� b to mean that every infinite b-computable

subtree of 2<ω has an a-computable branch.

The notation a� b was introduced in Simpson [27], and many of the basic properties of this ordering can

be found there. The following well-known lemma gives some equivalent characterizations of this ordering.

Lemma 2.1.6 (Scott [25], Solovay). Let a and b be Turing degrees. The following are equivalent:

(1) a� b

(2) Every partial {0, 1}-valued b-computable function has a total a-computable extension.

(3) a is the degree of a complete extension of the theory of Peano Arithmetic with an additional unary

predicate symbol P , axioms P (n) for all n ∈ B and ¬P (n) for all n /∈ B (where B is a fixed set in b),

and induction axioms for formulas involving P .
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Using the existence of a computable tree in which the branches code complete extensions of Peano

Arithmetic, it follows that there is a “universal” computable subtree of 2<ω.

Corollary 2.1.7. There exists an infinite computable subtree T of 2<ω such that given any branch BT of

T , and any infinite computable subtree S of 2<ω, there exists a branch BS of S such that BS ≤T BT .

It has long been known that there is a computable infinite subtree of 2<ω with no computable branch.

Relativizing this and Theorem 2.1.4, it follows that a ≥ b′ → a� b→ a > b. In [15], Jockusch and Soare

established the following strengthening of Theorem 2.1.4.

Theorem 2.1.8 (Low Basis Theorem [15, Theorem 2.1]). There exists a� 0 with a′ = 0′.

Jockusch and Soare also established the following cone avoidance theorem.

Theorem 2.1.9 (Jockusch and Soare [15, Theorem 2.5]). Suppose that {bk}k∈ω is a family of nonzero

degrees. There exists a� 0 such that bk � a for all k ∈ ω.

In terms of reverse mathematics, the existence of a computable infinite subtree of 2<ω with no computable

branch implies that Weak König’s Lemma is not provable in RCA0. Combining the axioms of RCA0 with

Weak König’s Lemma gives the important system WKL0.

2.2 Effective Analysis of Ramsey’s Theorem

Definition 2.2.1.

(1) Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n → p. Such an f is called a p-coloring of [B]n and

n is called the exponent. We say that a set H ⊆ B is homogeneous for f if H is infinite and f(x) = f(y)

for all x, y ∈ [B]n.

(2) Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → p. We say that a pair (A, g), where A ⊆ B

is infinite and g : [A]n → p, is a prehomogeneous pair for f if f(x, a) = g(x) for all x ∈ [A]n and all

a ∈ A with x < a.

Theorem 2.2.2 (Ramsey’s Theorem [23]). Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n → p.

There exists a set homogeneous for f .

Specker [30] was the first to analyze the effective content of Ramsey’s Theorem, and he showed that there

exists a computable f : [ω]2 → 2 with no computable homogeneous set. Before discussing further bounds on

the complexity of homogeneous sets, we first give a few proofs of Ramsey’s Theorem.

7



Our proofs of Ramsey’s Theorem break down into the following three steps, and differ only in their proofs

of (1):

(1) Given f : [B]n+1 → p, construct a prehomogeneous pair (A, g) for f .

(2) Apply induction to g : [A]n → p.

(3) Show that any set homogeneous for g is homogeneous for f .

Before proving the existence of prehomogeneous pairs, we first establish (3) to verify their utility.

Claim 2.2.3. Suppose that n, p ≥ 1, B ⊆ ω is infinite, f : [B]n+1 → p, and (A, g) is a prehomogeneous pair

for f . If H ⊆ A is homogeneous for g, then H is homogeneous for f .

Proof. Let H ⊆ A be homogeneous for g. Let x, y ∈ [H]n and a, b ∈ H with x < a and y < b. We have

f(x, a) = g(x) = g(y) = f(y, b), hence H is homogeneous for f .

We next prove that prehomogeneous pairs exist. We give three proofs, because each of the techniques

are relevant for later constructions, and each can be used to provide a different computability-theoretic

analysis. To facilitate the constructions, we first define a notion of prehomogeneous triple which will provide

an approximation to a desired prehomogeneous pair.

Definition 2.2.4. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → p. We call a triple (z, I, g)

where z ⊆ B is finite, I ⊆ B is infinite, z < I, and g : [z]n → p, a prehomogeneous triple for f if for all

x ∈ [z]n and all a ∈ z ∪ I with x < a, we have f(x, a) = g(x).

Proposition 2.2.5. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → p. There exists a prehomo-

geneous pair (A, g) for f .

Proof 1. This proof is the most straightforward, and proceeds by repeatedly thinning down a set of candi-

dates to add to the prehomogeneous pair, while ensuring that this set of candidates is always infinite. We

inductively define a sequence (am, Im, gm)m∈ω such that

• am ∈ B.

• Im ⊆ B is infinite.

• gm : [{ai : i ≤ m}]n → p.

• a0 < a1 < · · · < am−1 < am < Im ⊆ Im−1 ⊆ · · · ⊆ I1 ⊆ I0.

• g0 ⊆ g1 ⊆ · · · ⊆ gm.
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• ({ai : i ≤ m}, Im, gm) is a prehomogeneous triple for f .

We begin by letting a−1 = −1, I−1 = B, and g−1 = ∅.

Suppose that we have defined our sequence through stage m ≥ −1. We first let am+1 = min(Im),

I ′m = Im−{am+1}, and gm+1(x) = gm(x) for all x ∈ [{ai : i ≤ m}]n. List the elements of [{ai : i ≤ m+1}]n

whose greatest element is am+1 as x0, x1, . . . , xl−1, where l =
(
m+1
n−1

)
. If l = 0, let Im+1 = I ′m and gm+1 = gm.

Otherwise, we proceed inductively through the xk, defining gm+1(xk) and infinite sets J0, J1, . . . , Jl such that

I ′m = J0 ⊇ J1 ⊇ · · · ⊇ Jl along the way. Let J0 = I ′m. Suppose that k < l, and we have defined Jk. Since Jk

is infinite, there exists q < p such that there are infinitely many b ∈ Jk with f(xk, b) = q. Fix the least such

q, and let gm+1(xk) = q and Jk+1 = {b ∈ Jk : f(xk, b) = q}. Proceed to the next value of k < l, if it exists.

Once Jl has been defined, let Im+1 = Jl. One easily checks that the invariants are maintained. This

completes stage m + 1.

Finally, let A = {am : m ∈ ω} and g =
⋃

m∈ω gm. Then (A, g) is a prehomogeneous pair for f .

Proof 2. This proof makes use of an infinite bounded tree T in which the branches code prehomogeneous

pairs. Let B = {b0 < b1 < b2 < . . . }. We first give an intuitive picture of the construction. We inductively

place the elements of B on a tree ordered by ≺ in the following manner. To begin, put b0,b1,. . . ,bn−1 on a

tree with b0 at the root and b0 ≺ b1 ≺ · · · ≺ bn−1. Suppose that we’ve placed bi for all i < m. We now

work our way up the tree to place bm as a new leaf. Start at node bn−1. If we’re at node bj , look to see if

there is an immediate ≺-successor bk to bj such that f(x, bk) = f(x, bm) for all x ∈ [{bl : bl � bj}]n whose

last element is bj . If so, move to node bk and continue up the tree. Otherwise, place bm as a new leaf with

bj ≺ bm. Notice that a branch of this tree will code a prehomogeneous pair.

More precisely, we define a sequence {Tm}m∈ω of trees and a sequence {`m}m∈ω of functions such that

• Tm ⊆ ω<ω.

• T0 ⊆ T1 ⊆ T2 ⊆ . . . .

• |Tm| = m.

• `m : Tm → B with range(`m) = {bi : i < m}

• `0 ⊆ `1 ⊆ `2 ⊆ . . .

Given σ ∈ Tm, we think of `m(σ) as a label from B for the node σ ∈ Tm. We initially define Tm and `m

for all m ≤ n. For k ∈ ω, let 0k be the string of k zeros. Given m ≤ n, let Tm = {0k : k < m} and let

`m(0k) = bk for all k < m.
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Suppose that m ≥ n, and we have defined Tm and `m. Let `m+1(τ) = `m(τ) for all τ ∈ Tm. Define

a sequence of elements of Tm inductively as follows. For k with 0 ≤ k < n, let σk = 0k. Suppose

that k ≥ n − 1 and we have defined σi for all i ≤ k. List the elements of [`m(σ0), `m(σ1), . . . , `m(σk)]n

whose last element is `m(σk) as x0 <n x1 <n · · · <n xl−1 (recall Definition 1.2.2) where l =
(

k
n−1

)
. Let

c = 〈f(x0, bm), f(x1, bm), . . . , f(xl−1, bm)〉. If σk ∗ c ∈ Tm, let σk+1 = σk ∗ c and continue the induction.

Otherwise, let Tm+1 = Tm ∪ {σk ∗ c}, and let `m+1(σk ∗ c) = bm. Notice that the induction must stop at

some finite stage because |Tm| = m.

Let T =
⋃

m∈ω Tm and ` =
⋃

m∈ω `m. Now T is an infinite tree and is bounded by h : ω → ω defined

by h(k) = max({0} ∪ {〈a0, a1, . . . , al−1〉 : l =
(

k
n−1

)
and ai < p whenever 1 ≤ i ≤ l}). By König’s Lemma,

T has a branch f . For each k ∈ ω, let σk = f � k. Let A = {`(σk) : k ∈ ω} and define g : [A]n → p as

follows. Suppose that k1 < k2 < · · · < kn in ω. List the elements of [`(σ0), `(σ1), `(σ2), . . . , `(σkn
)]n whose

last element is `(σkn) as x0 <n x1 <n · · · <n xl−1, and fix i < l such that xi = {`(σk1), `(σk2), . . . , `(σkn)}.

Let g(`(σk1), `(σk2), . . . , `(σkn
)) = (σkn+1)i. Then (A, g) is a prehomogeneous pair for f .

Proof 3. This proof is similar to the first, but we make use of an ultrafilter to guide our inductive construction.

Let U be a nonprincipal ultrafilter on ω with B ∈ U , i.e. U ⊆ P(ω) such that

• B ∈ U and ∅ /∈ U .

• For all X, Y ∈ P(ω), if X ∈ U and X ⊆ Y , then Y ∈ U .

• For all X, Y ∈ U , we have X ∩ Y ∈ U .

• For all X ∈ P(ω), either X ∈ U or X ∈ U .

• For all cofinite X ∈ P(ω), we have X ∈ U .

We inductively define a sequence (am, Im, gm)m∈ω such that

• am ∈ B.

• Im ⊆ B and Im ∈ U .

• gm : [{ai : i ≤ m}]n → p.

• a0 < a1 < · · · < am−1 < am < Im ⊆ Im−1 ⊆ · · · ⊆ I1 ⊆ I0.

• g0 ⊆ g1 ⊆ · · · ⊆ gm.

• ({ai : i ≤ m}, Im, gm) is a prehomogeneous triple for f .
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We begin by letting a−1 = −1, I−1 = B, and g−1 = ∅.

Suppose that we have defined our sequence through stage m ≥ −1. We first let am+1 = min(Im),

I ′m = Im − {am+1}, and gm+1(x) = gm(x) for all x ∈ [{ai : i ≤ m}]n. Let F be the set of those elements of

[{ai : i ≤ m + 1}]n whose last element is am+1. If F = ∅, let Im+1 = I ′m and gm+1 = gm. Suppose F 6= ∅.

For each x ∈ F , there is exactly one q < p such that Zx,q = {b ∈ I ′m : f(x, p) = q} ∈ U (since I ′m ∈ U ,⋃
q<p Zx,q = I ′m, and Zx,q ∩ Zx,r = ∅ whenever q, r < p with q 6= r). For each x ∈ F , let qx be the unique q

with Zx,q ∈ U . Let Im+1 =
⋂

x∈F Zx,qx
, and notice that Im+1 ∈ U . For each x ∈ F , let gm+1(x) = qx. One

easily checks that ({ai : i ≤ m + 1}, Im+1, gm+1) is a prehomogeneous triple for f .

Finally, let A = {am : m ∈ ω} and g =
⋃

m∈ω gm. Then (A, g) is a prehomogeneous pair for f .

We finally give a proof of Ramsey’s Theorem.

Proof of Theorem 2.2.2. The proof is by induction on n. Suppose that n = 1 so that we have f : [B]1 → p.

Since B is infinite and p ∈ ω, there exists q < p such that the set Aq = {b ∈ B : f(b) = q} is infinite. Notice

that Aq is homogeneous for any such q.

Suppose that the theorem holds for n, and we are given f : [B]n+1 → p. By Proposition 2.2.5, there exists

a prehomogeneous pair (A, g) for f . Applying the inductive hypothesis to g, there exists H ⊆ A which is

homogeneous for g. By Claim 2.2.3, H is homogeneous for f .

Examining the above proofs, we see that the key feature in analyzing the computability-theoretic com-

plexity of homogeneous sets resides in the complexity of prehomogeneous pairs for computable f . A simple

analysis of the first proof shows that if B and f are computable, then there is a prehomogeneous pair (A, g)

for f such that deg(A ⊕ g) ≤ 0′′. By applying induction and relativizing, we get the result that if B ⊆ ω

is infinite and computable, and f : [B]n → p is computable, then there is a homogeneous set H for f with

deg(H) ≤ 0(2n−2). However, an analysis of the second proof shows that if B and f are computable, then the

tree T constructed is 0′-computable and computably bounded, so we get the following better result (using

the Low Basis Theorem relative to 0′ for the last statement).

Proposition 2.2.6. Suppose that n, p ≥ 1, B ⊆ ω is infinite and computable, f : [B]n+1 → p is computable,

and a� 0′. There exists a prehomogeneous pair (A, g) for f such that deg(A⊕ g) ≤ a. In particular, there

exists a prehomogeneous pair (A, g) for f such that deg(A⊕ g)′ ≤ 0′′

If we apply induction and relativize, we conclude the following.

Theorem 2.2.7 (Jockusch [12, Theorem 5.6]). Suppose that n ≥ 2, p ≥ 1, B ⊆ ω is infinite and

computable, f : [ω]n → p is computable, and a� 0(n−1). There exists a homogeneous set H for f such that

deg(H) ≤ a.
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To analyze the third proof, we need to replace the ultrafilter by another object which plays a similar role.

Definition 2.2.8. A set V ⊆ ω is r-cohesive if V is infinite and for every computable set Z, either V ∩Z is

finite or V ∩ Z is finite.

The following easy claim establishes the usefulness of r-cohesive sets in our context, by characterizing

them as the infinite sets which are homogeneous, modulo finite sets, for all computable f : [ω]1 → p.

Claim 2.2.9. Let V be an infinite set. The following are equivalent:

(1) V is r-cohesive.

(2) For every computable f : [ω]1 → 2, there exists a finite z ⊆ ω such that V \z is homogeneous for f .

(3) For every p ≥ 2 and every computable f : [ω]1 → p, there exists a finite z ⊆ ω such that V \z is

homogeneous for f .

To see how r-cohesive sets can play a role analogous to the ultrafilter in Proof 3 above, suppose that V ⊆ B

is r-cohesive and f : [B]n+1 → p is computable. Given x ∈ [B]n and q < p, the set Zx,q = {b ∈ B : f(x, b) = q}

is computable, so either either V ∩Zx,q is finite or V ∩Zx,q is finite. Applying this for each q < p, it follows

that there exists a unique q < p such that V ∩ Zx,q is finite. Thus, the r-cohesive set guides our inductive

construction like the ultrafilter does in Proof 3 of Theorem 2.2.5.

Jockusch and Stephan [9] (see also [10] for a correction) characterized the Turing degrees of jumps of

r-cohesive sets.

Theorem 2.2.10 (Jockusch and Stephan [9, Theorem 2.2(ii)]). Suppose that a � 0′. There exists

an r-cohesive set V such that deg(V )′ ≤ a. Furthermore, every r-cohesive set V satisfies deg(V )′ � 0′.

Using this result and a suitable r-cohesive set in place of the ultrafilter in Proof 3 above gives another

proof of Proposition 2.2.6. However, by a much more detailed analysis of this approach when n = 2, Cholak,

Jockusch, and Slaman improved this by a jump.

Theorem 2.2.11 (Cholak, Jockusch, Slaman [1, essentially Lemma 4.6]). Suppose p ≥ 1, B ⊆ ω is

infinite and computable, f : [B]2 → p is computable, and a � 0′. There exists a homogeneous set H for f

such that deg(H)′ ≤ a.

In an interesting reversal of the role of cohesiveness, Cholak, Jockusch, and Slaman also established that

there exists a computable f : [ω]2 → 2 such that all homogeneous sets satisfy a cohesiveness property slightly

weaker than that for r-cohesive sets.
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Definition 2.2.12. A set V ⊆ ω is p-cohesive if V is infinite and for every primitive recursive set Z, either

V ∩ Z is finite or V ∩ Z is finite.

Proposition 2.2.13 (Cholak, Jockusch, Slaman [1, Theorem 12.5]). There exists a computable

f : [ω]2 → 2 such that every set homogeneous for f is p-cohesive.

Jockusch and Stephan [9] also characterized the Turing degrees of p-cohesive sets.

Theorem 2.2.14 (Jockusch and Stephan [9, Theorem 2.1]). For every degree a, a is p-cohesive if

and only if a′ � 0′.

Combining Theorem 2.2.14 and Proposition 2.2.13, we get the following corollary showing that Theorem

2.2.11 is sharp.

Corollary 2.2.15. There exists a computable f : [ω]2 → 2 such that deg(H)′ � 0′ for all sets H homogeneous

for f .

Therefore, as remarked on pp. 50-51 of [1], we get a corollary about Ramsey’s Theorem for exponent 2

similar to Corollary 2.1.7 about König’s Lemma with “jump universal” in place of “universal”.

Corollary 2.2.16. There exists a computable f : [ω]2 → 2 such that that given any set Hf homogeneous for

f , and any computable g : [ω]2 → 2, there exists a set Hg homogeneous for g with H ′
g ≤T H ′

f .

Another fundamental step in understanding the strength of Ramsey’s Theorem for exponent 2 was taken

by Seetapun, who proved the following cone avoidance theorem, hence establishing that is impossible to code

anything into homogeneous sets for a computable f : [ω]2 → p.

Theorem 2.2.17 (Seetapun [26]). Suppose that p ≥ 1, B ⊆ ω is infinite and computable, f : [B]2 → p is

computable and {bk}k∈ω is a family of nonzero degrees. There exists a set H homogeneous for f such that

bk � deg(H) for all k ∈ ω.

In contrast, the following two propositions show that the halting problem can be coded into the homoge-

neous sets of a computable f : [ω]3 → 2 and a c.e. f : [ω]2 → 2. They will play important roles in the coding

techniques used throughout this dissertation.

Proposition 2.2.18 (Jockusch [12, Lemma 5.9]). For every n ≥ 3, there exists a computable h : [ω]n → 2

such that for all sets H homogeneous for h, we have h([H]2) = {0} and H ≥T 0(n−2).

Proposition 2.2.19 (Jockusch and Hummel [8, Lemma 3.7]). There exists a c.e. h : [ω]2 → 2 (that

is, {x ∈ [ω]2 : h(x) = 1} is c.e.) such that for all sets H homogeneous for h, we have h([H]2) = {0} and

H ≥T 0′.
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We first show how we can use a relativization of Proposition 2.2.18 together with the Limit Lemma to

lift results for exponent 2 to higher exponents. We state the theorem in relativized form to facilitate the

inductive proof.

Proposition 2.2.20. Suppose that X ⊆ ω, n ≥ 2, p ≥ 1, B ⊆ ω is infinite and X-computable, f : [B]n → p

is X-computable, and a � deg(X)(n−1). There exists a homogeneous set H for f such that deg(H)′ ≤ a.

Furthermore, for every X ⊆ ω and every n ≥ 2, there exists an X-computable f : [ω]n → 3 such that for all

sets H homogeneous for f , we have deg(H ⊕X) ≥ deg(X)(n−2) and deg(H ⊕X)′ � deg(X)(n−1).

Proof. We prove the first statement by induction on n. The case n = 2 follows by relativizing Theorem 2.2.11.

Suppose that n ≥ 2 and the result holds for n. Suppose that B and f : [B]n+1 → p are X-computable, and

a � deg(X)(n). Relativizing Proposition 2.2.6 to X, there exists a prehomogeneous pair (A, g) for f with

deg(A⊕g)′ ≤ deg(X)′′. By the inductive hypothesis, there exists a set H homogeneous for g : [A]n → p with

deg(H)′ ≤ a since a� deg(X)(n) = deg(X ′′)(n−2) ≥ (deg(A⊕ g)′)(n−2) = deg(A⊕ g)(n−1). By Claim 2.2.3,

H is homogeneous for f .

We prove the second part of the proposition in following strong form. For every X ⊆ ω and every

n ≥ 2, there exists an X-computable f : [ω]n → 3 such that for all sets H homogeneous for f , we have

f([H]n) 6= {2}, deg(H ⊕ X) ≥ deg(X)(n−2) and deg(H ⊕ X)′ � deg(X)(n−1). The case n = 2 follows

by relativizing Corollary 2.2.15. Suppose that n ≥ 2 and the result holds for n. Fix an X ′-computable

g : [ω]n → 3 such that for all sets H homogeneous for g, we have g([H]n) 6= {2}, deg(H ⊕X ′) ≥ deg(X)(n−1)

and deg(H ⊕X ′)′ � deg(X)(n). By the Limit Lemma, there is an X-computable g1 : [ω]n+1 → 3 such that

g(x) = lims g1(x, s) for all x ∈ [ω]n. Notice that if H homogeneous for g1, then H is homogeneous for g. By

Proposition 2.2.18 relativized to X and the fact that n+1 ≥ 3, there exists an X-computable h : [ω]n+1 → 2

such that for all infinite sets H homogeneous for h, we have h([H]2) = {0} and H ⊕X ≥T X ′. Define an

X-computable f : [ω]n+1 → 3 by

f(y) =


g1(y) if h(y) = 0

2 if h(y) = 1

Suppose that H is homogeneous for f . If f([H]n+1) = {2}, then for all y ∈ [H]n+1, either h(y) = 1 or

g1(y) = 2. By Ramsey’s Theorem applied to the function h � [H]n+1 : [H]n+1 → 2, there exists an infinite

set I ⊆ H such that either h([I]n+1) = {1} or h([I]n+1) = {0}, and hence g1([I]n+1) = {2}, both of which

are impossible. Therefore, f([H]n+1) 6= {2}, and hence H is homogeneous for both h and g1. Since H is

homogeneous for h, we have H⊕X ≥T X ′. Since every set homogeneous for g1 is also homogeneous for g, we

have g1([H]n) 6= {2}, deg(H ⊕X ′) ≥ deg(X)(n−1) and deg(H ⊕X ′)′ � deg(X)(n). Hence, f([H]n+1) 6= {2},
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deg(H ⊕X) ≥ deg(H ⊕X ′) ≥ deg(X)(n−1) and deg(H ⊕X)′ ≥ deg(H ⊕X ′)′ � deg(X)(n).

The following question of whether we can replace the 3-coloring from the previous proposition by a

2-coloring is open.

Question 2.2.21. For each n ≥ 3, does there exist a computable f : [ω]n → 2 such that for all sets H

homogeneous for f , we have deg(H) ≥ 0(n−2) and deg(H)′ � 0(n−1)?

Jockusch also characterized the location of homogeneous sets for computable f in the arithmetical hier-

archy.

Theorem 2.2.22 (Jockusch [12, Theorem 5.1, Theorem 5.5]). Suppose that n, p ≥ 2, B ⊆ ω is infinite

and computable, and f : [B]n → p is computable. There exists a Π0
n homogeneous set for f . Furthermore,

for each n ≥ 2, there exists a computable f : [ω]n → 2 with no Σ0
n set homogeneous for f .

We give a proof of the first part of this theorem in the case n = 2, as it will be useful to refer to when

we generalize it in Chapter 3.

Proof. Suppose that n = 2, p ≥ 2, B is computable, and f : [B]2 → p is computable. We seek to build a

prehomogeneous pair (A, g) such that A = {a0 < a1 < a2 < . . . } is Π0
2 by using a 0′-oracle to enumerate its

complement. We imitate Proof 1 of Theorem 2.2.5 above, but we must be careful to avoid the 2-quantifier

question of whether certain sets are infinite. Hence, when building our set, we ask only 1-quantifier questions

which give approximate answers to whether certain sets are infinite. Of course, we can be misled, but our

approximations will eventually be correct and we can discard progress that has been made along tainted

paths.

The construction is a movable marker construction using a 0′-oracle. We denote by as
i the position of

the (i + 1)st marker Λi at the beginning of stage s. At the beginning of each stage s, we will have a number

ns such that the markers currently having a position are exactly the Λi for i < ns, and for each i < ns, we

will have a number qs
i , representing the current approximation to g(as

i ). Let βs be the greatest position of

any marker up to stage s (βs = 0 if s = 0). Given these and k ≤ ns, we say that a number b is k-acceptable

at s if

• b ∈ B.

• b > βs.

• For all i < k, f(as
i , b) = qs

i .
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Construction: First set n0 = 0. Stage s ≥ 0: Assume inductively that we have ns such that the markers

currently having a position are exactly the Λi for i < ns, along with qs
i for all i < ns. Enumerate into A all

numbers b ≤ βs such that b 6= as
i for all i < ns. Using a 0′-oracle, let ks be the largest k ≤ ns such that

there exists a number which is k-acceptable at s. Note that ks exists because every sufficiently large element

of B is 0-acceptable at s.

Case 1: ks = ns: Set ns+1 = ns +1 and place the marker Λns on the least ks-acceptable number. Leave

all markers Λi with i < ns in place, and let qs+1
i = qs

i for all i < ns. Also, let qs+1
ns = 0. (Place a new marker,

and give it the first color.)

Case 2: ks < ns: Set ns+1 = ks + 1 and detach all markers Λi with ks < i < ns. Leave all markers Λi

with i ≤ ks in place and let qs+1
i = qs

i for all i < ks. Also, let qs+1
ks = qs

ks + 1. (Discard mistakes and move

to the next color.)

End Construction.

Claim 2.2.23. For all k ∈ ω, each limit lims as
k and lims qs

k exists, so we may define ak = lims as
k and

qk = lims qs
k. Furthermore qk < p for all k ∈ ω.

Proof. We proceed by induction. We assume that the Claim is true for all i < k and prove it for k. Let t be

the least stage such that for all i < k and all s ≥ t, we have as
i = ai, and qs

i = qi. At stage t, the marker Λk

is placed on a number b via Case 1 of the construction, so nt+1 = k + 1. Since each of as
i and qs

i for i < k

have come to their limits, we must have ks ≥ k and hence ns ≥ k +1 for all s > t by construction (because if

s > t is least such that ks < k, then we enter Case 2, so qs
ks changes). Therefore, by construction, we never

again move the marker Λk, so as
k = at+1

k for all s ≥ t + 1 and we may let ak = lims as
k.

We now show that lims qs
k exists by showing that there are at most p− 1 stages s > t such that ks = k.

This suffices, because qs
k increases by 1 only at such s. Suppose then that there exists p stages s > t such

that ks = k. For each q < p, there is a unique sq > t such that q
sq

k = q, and ksq = k. Given any q < p, since

ksq = k, there are no numbers which are (k + 1)-acceptable at sq. Let r = max{sq : q < p}, and let b be

the least number which is k-acceptable at r (such a number exists because otherwise we have kr < k, which

we know is not true). If we let q = f(ak, b), then b is (k + 1)-acceptable at sq (since βsq ≤ βr as sq ≤ r),

contradicting the fact that no number is (k + 1)-acceptable at sq. It follows that there are at most p − 1

stages s > t such that ks = k, so the proof of the Claim is complete.

Claim 2.2.24. Let q < p be least such that {k : qk = q} is infinite. Then H = {ak : qk = q} is a Π0
2

homogeneous set for f .
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Proof. To see that H is Π0
2, perform the above construction, with the additional action of enumerating the

number as
ks at stage s if qs

ks > q. Then ak is not enumerated if and only if qk ≤ q. Since {ak : qk < q} is

finite, it follows (by removing this finite set) that H is Π0
2. Suppose that i < j and ai, aj ∈ H. Let s be least

such that as
j = aj . By construction, aj was (i + 1)-acceptable at s, hence f(ai, aj) = qi = q. It follows that

H is a Π0
2 homogeneous set for f .

In terms of reverse mathematics, for each exponent n ≥ 3, Ramsey’s Theorem for exponent n is equivalent

to ACA0 over RCA0 (see [28]). The reverse mathematical strength of Ramsey Theorem for exponent 2 is

still somewhat mysterious, although [1] has considerably clarified the issue. It follows from the Low Basis

Theorem and Theorem 2.2.22 that WKL0 does not imply Ramsey’s Theorem for exponent 2. By using

Theorem 2.2.17, Seetapun proved that Ramsey’s Theorem for exponent 2 does not imply ACA0 over RCA0,

hence Ramsey’s Theorem for exponent 2 is not equivalent to any of the usual systems of reverse mathematics

over RCA0.

2.3 The Canonical Ramsey Theorem

In Chapter 3, we study analogous questions for the Canonical Ramsey Theorem, a partition theorem due to

Erdös and Rado about functions f : [ω]n → ω, i.e. colorings with infinitely many colors. Of course, we can

not expect to always have homogeneous sets, as witnessed by the following simple functions f : [ω]2 → ω:

(1) f(a, b) = a

(2) f(a, b) = b

(3) f(a, b) = 〈a, b〉

However, the Canonical Ramsey Theorem for exponent 2 says that given any f : [ω]2 → ω, there exists an

infinite set C ⊆ ω which either is homogeneous, or on which f behaves like one of the above functions.

Precisely, given any f : [ω]2 → ω, there exists an infinite C such that either

(1) For all a1, b1, a2, b2 ∈ C with a1 < b1 and a2 < b2, we have f(a1, b1) = f(a2, b2).

(2) For all a1, b1, a2, b2 ∈ C with a1 < b1 and a2 < b2, we have f(a1, b1) = f(a2, b2)↔ a1 = a2.

(3) For all a1, b1, a2, b2 ∈ C with a1 < b1 and a2 < b2, we have f(a1, b1) = f(a2, b2)↔ b1 = b2.

(4) For all a1, b1, a2, b2 ∈ C with a1 < b1 and a2 < b2, we have f(a1, b1) = f(a2, b2)↔ a1 = a2 and b1 = b2.
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In the general case of an f : [ω]n → ω, we get 2n different possibilities.

Definition 2.3.1. Suppose that n ≥ 1, B ⊆ ω is infinite, f : [B]n → ω, and u ⊆ n. We say that a set C ⊆ B

is u-canonical for f if C is infinite and for all x1, x2 ∈ [C]n, we have f(x1) = f(x2) ↔ x1 � u = x2 � u. We

say that a set C ⊆ B is canonical for f if there exists u ⊆ n such that C is u-canonical for f .

Theorem 2.3.2 (Canonical Ramsey Theorem [4]). Suppose that n ≥ 1, B ⊆ ω is infinite, and

f : [B]n → ω. There exists C ⊆ B canonical for f .

Ramsey’s Theorem is an immediate consequence of The Canonical Ramsey Theorem.

Claim 2.3.3. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n → p. If C ⊆ B is canonical for f , then

C is homogeneous for f .

Proof. Suppose that C ⊆ B is u-canonical for f , where u ⊆ n. Suppose that there exists i < n such that

i ∈ u. Fix xk ∈ [C]n for all k ∈ ω such that x0 < x1 < x2 < . . . . For any j, k ∈ ω with j 6= k, we have

xj � u 6= xk � u, hence f(xj) 6= f(xk). This contradicts the fact that f(xk) < p for each k ∈ ω. It follows

that there is no i < n such that i ∈ u, so u = ∅. Therefore, C is homogeneous for f .

In the original inductive proof of the Canonical Ramsey Theorem (see [4]), in order to prove the result

for exponent n ≥ 2, Erdös and Rado used Ramsey’s Theorem for exponent 2n together with the Canonical

Ramsey Theorem for exponent n−1. Using Theorem 2.2.22, an effective analysis of their proof gives the result

that every computable f : [ω]2 → ω has a Π0
4 canonical set. However, as n increases, the use of induction

causes the arithmetical bounds to grow on the order of n2. Rado [22] discovered a noninductive proof of

the Canonical Ramsey Theorem which still used Ramsey’s Theorem for exponent 2n to prove the result for

exponent n. An effective analysis of his proof shows that given n ≥ 2 and a computable f : [ω]n → ω, there

exists a ∆0
2n+1 canonical set for f .

Below, we give a new, purely inductive proof of the Canonical Ramsey Theorem. Analyzing this proof,

we decrease the bounds:

Theorem 2.3.4. Suppose that n ≥ 2 and f : [ω]n → ω is computable. There exists a Π0
2n−2 set C canonical

for f .

We also analyze the Turing degrees of canonical sets for computable colorings, and show a close connection

with the analysis of König’s Lemma and Ramsey’s Theorem.

Theorem 2.3.5. Suppose that n ≥ 2, a � 0(2n−3) and f : [ω]n → ω is computable. There exists C ⊆ ω

such that C is canonical for f and deg(C) ≤ a.

For n = 2, we show that the above bounds are sharp.
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2.4 The Regressive Function Theorem

As mentioned in Chapter 1, Paris and Harrington [21] discovered a partition theorem slightly stronger than

the finite version of Ramsey’s Theorem, and Kanamori and McAloon [17] provided another finitary partition

theorem, which is true but not provable in Peano Arithmetic. In Chapter 4, we analyze the infinitary version

of Kanamori and McAloon’s partition theorem from the viewpoint of computability theory.

Definition 2.4.1. Suppose that n ≥ 1 and B ⊆ ω is infinite. A function f : [B]n → ω is regressive if for all

x ∈ [B]n, we have f(x) < min(x) whenever min(x) > 0, and f(x) = 0 whenever min(x) = 0.

Definition 2.4.2. Suppose that n ≥ 1, B ⊆ ω is infinite, and f : [B]n → ω is regressive. A set M ⊆ B is

minhomogeneous for f if M is infinite and for all x, y ∈ [M ]n with min(x) = min(y) we have f(x) = f(y).

Theorem 2.4.3 (Regressive Function Theorem [17]). Suppose that n ≥ 1, B ⊆ ω is infinite, and

f : [B]n → ω is regressive. There exists a minhomogeneous set for f .

The following claim shows that the Regressive Function Theorem is an immediate consequence of the

Canonical Ramsey Theorem.

Claim 2.4.4. Suppose that n ≥ 1, B ⊆ ω is infinite, and f : [B]n → ω is regressive. If C ⊆ B is canonical

for f , then C is minhomogeneous for f .

Proof. If n = 1, then every infinite subset of ω is minhomogeneous for f , so we may assume that n ≥ 2.

Suppose that C ⊆ B is u-canonical for f , where u ⊆ n. Suppose that there exists i with 0 < i < n such that

i ∈ u. Let c0 = min(C). Fix xk ∈ [C]n−1 for all k ∈ ω such that c0 < x0 < x1 < x2 < . . . . For any j, k ∈ ω

with j 6= k, we have (c0, xj) � u 6= (c0, xk) � u, hence f(c0, xj) 6= f(c0, xk). This contradicts the fact that

f(c0, xk) ≤ c0 for each k ∈ ω. It follows that there is no i with 0 < i < n such that i ∈ u, so either u = ∅

or u = {0}. If u = ∅, then C is homogeneous for f , and hence minhomogeneous for f . If u = {0}, then for

all x, y ∈ [C]n, we have f(x) = f(y) ↔ x � {0} = y � {0} ↔ min(x) = min(y), so C is minhomogeneous for

f .

In Chapter 4, we analyze the Regressive Function Theorem, and establish a sharp characterization for

the location of minhomogeneous sets for computable f in terms of the Turing degrees and the arithmetical

hierarchy.

Theorem 2.4.5. Suppose that n ≥ 2, f : [ω]n → ω is computable and regressive, and a � 0(n−1). There

exists a set M minhomogeneous for f such that deg(M) ≤ a. Furthermore, for every n ≥ 2, there exists a

computable regressive f : [ω]n → ω such that deg(M)� 0(n−1) for every set M minhomogeneous for f .
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Theorem 2.4.6. Suppose that n ≥ 2 and f : [ω]n → ω is computable and regressive. There exists a Π0
n

minhomogeneous set for f . Furthermore, for every n ≥ 2, there exists a computable regressive f : [ω]n → ω

with no Σ0
n set minhomogeneous for f .

2.5 Summary

Putting together the characterizations of Turing degrees of solutions for computable instances of König’s

Lemma and the above partition theorems for exponent 2, we see a close connection.

Summary 2.5.1. Let a be a Turing degree. The following are equivalent:

(1) a� 0′

(2) Every computable f : [ω]2 → 2 has a homogeneous set H such that deg(H)′ ≤ a.

(3) Every computable regressive f : [ω]2 → ω has a minhomogeneous set M such that deg(M) ≤ a.

(4) Every computable f : [ω]2 → ω has a canonical set C such that deg(C) ≤ a.

For exponents n ≥ 3, the Turing degrees characterizing the location of solutions for Ramsey’s Theorem

and the Regressive Function Theorem increase by one jump for each successive value of n, while our upper

bounds for solutions for the Canonical Ramsey Theorem increase by two jumps for each successive value of

n.

In terms of the arithmetical hierarchy, each of the above partition theorems for exponent 2 have Π0
2

solutions for computable instances, but not necessarily Σ0
2 solutions. For exponents n ≥ 3 the location

of solutions for Ramsey’s Theorem and the Regressive Function Theorem increase by one jump for each

successive value of n, while our upper bounds for solutions for the Canonical Ramsey Theorem increase by

two jumps for each successive value of n.
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Chapter 3

The Canonical Ramsey Theorem and
Computability Theory

3.1 A New Proof

Our proof of the Canonical Ramsey Theorem is inductive and similar in broad outline to the proof of

Ramsey’s Theorem given in Chapter 2. The basic question is how to define a “precanonical pair” (A, g)

so that that we can carry out the same outline to prove the Canonical Ramsey Theorem. For simplicity,

consider a function f : [ω]2 → ω. We will enumerate A in increasing order as a0, a1, . . . . We begin by letting

a0 = 0. If there exists c ∈ ω such that there are infinitely many b ∈ ω with f(a0, b) = c, then we can define

g(a0) = c, restrict attention to the set I0 = {b ∈ ω : f(a0, b) = c}, and after letting a1 = min I0, continue in

this fashion. In this case, we’ve made progress toward achieving a u-canonical set with 1 /∈ u, because if we

fix a0 and vary b ∈ I0, we do not change the value of f . If we succeed infinitely many times in this manner

with a fixed c, then the corresponding elements form a ∅-canonical set, while if we succeed with infinitely

many different c in this manner, then the corresponding elements form a {0}-canonical set. Notice that this

decision (one fixed c versus infinitely many distinct c) amounts to finding a canonical set for exponent 1 for

g restricted to the set of successes.

The problem arises when for each c ∈ ω, there are only finitely many b ∈ ω with f(a0, b) = c. Now we

must seek to make progress toward achieving a u-canonical set with 1 ∈ u. We therefore let I0 = {b ∈ ω :

f(a0, b) 6= f(a0, b
′) for all b′ < b}, so that if we fix a0 and vary b ∈ I0, we always change the value of f . We

now want to let g(a0) be some new, infinitary color d distinct from each c ∈ ω. Suppose that we then set

a1 = min I0, and again are faced with the situation that for each c ∈ ω, there are only finitely many b ∈ I0

with f(a1, b) = c. We first want to thin out I0 to an infinite set I ′0 so that f(ai, b0) = f(aj , b1) → b0 = b1

whenever 0 ≤ i, j ≤ 1 and b0, b1 ∈ I ′0 (which is possible by the assumption about a0, a1). This allows
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both a0 and a1 to be in the same u-canonical set with 1 ∈ u. Next, we need to assign an appropriate

infinitary color to g(a1) so that a canonical set for g will be an u-canonical set for f . Thus, if the set

{b ∈ I ′0 : f(a0, b) = f(a1, b)} is infinite, we let g(a1) = g(a0) and we let I1 be this set. Otherwise we will set

g(a1) to a new infinitary color and let I1 = {b ∈ I ′0 : f(a0, b) 6= f(a1, b)}. If we succeed infinitely many times

in this manner with a fixed infinitary color d, then the corresponding elements form a {1}-canonical set,

while if we succeed with infinitely many different d in this manner, then the corresponding elements form a

{0, 1}-canonical set. Notice again that this decision (one fixed d versus infinitely many distinct d) amounts

to finding a canonical set for exponent 1 for g restricted to those elements assigned infinitary colors.

In general, given f : [B]n+1 → ω, we can pursue the above strategy to get an infinite set A ⊆ B and a

function g : [A]n → ω× 2, where we interpret each (c, 0) ∈ ω× 2 as a finitary color and each (d, 1) ∈ ω× 2 as

an infinitary color. Now, before we can apply induction, it is important to thin out our set A to a set D so

that either g maps all elements of [D]n to finitary colors, or g maps all elements of [D]n to infinitary colors.

Of course, we can do this with a simple application of Ramsey’s Theorem for exponent n. Although this

strategy will succeed in proving the Canonical Ramsey Theorem, the use of Ramsey’s Theorem is costly to

an effective analysis. We therefore pursue a slightly different approach which will roll this use of Ramsey’s

Theorem into the induction. Hence, we extend the notion of canonical sets to functions f : [B]n → ω × p

for p ∈ ω by also stipulating that a canonical C set must have the property that f maps all elements of

[C]n into the same column of ω × p. Then, the above strategy will give us an infinite set A and a function

g : [A]n → ω × 2p, where we interpret (c, q) ∈ ω × 2p with 0 ≤ q < p as a finitary color corresponding to

column q and (d, q) ∈ ω × 2p with p ≤ q < 2p as an infinitary color corresponding to column q − p of ω × p.

Applying induction to this g will give us the result because the resulting canonical set will be mapped by g

entirely into one column of ω × 2p.

Definition 3.1.1. Suppose that n, p ≥ 1, B ⊆ ω is infinite, f : [B]n → ω × p, and u ⊆ n. We say that a set

C is u-canonical for f if

(1) C ⊆ B

(2) C is infinite.

(3) C is homogeneous for π2 ◦ f : [B]n → p.

(4) If x1, x2 ∈ [C]n, then f(x1) = f(x2)↔ x1 � u = x2 � u.

We say that a set C is canonical for f if there exists u ⊆ n such that C is u-canonical for f .
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Remark 3.1.2. Suppose that n ≥ 1, B ⊆ ω is infinite, f : [B]n → ω, and u ⊆ n. Define f∗ : [B]n → ω × 1

by letting f∗(x) = (f(x), 0). Notice that for any infinite set C ⊆ ω, C is u-canonical for f (as in Definition

2.3.1) if and only if C is u-canonical for f∗ (as in Definition 3.1.1). Therefore, in the following, we identify

a function f : [B]n → ω with the corresponding function f∗ : [B]n → ω × 1.

For the reasons mentioned above, we prove the Canonical Ramsey Theorem by induction on n in the

following strong form.

Theorem 3.1.3. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n → ω × p. There exists a set C ⊆ B

such that C is canonical for f .

Definition 3.1.4. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → ω × p. We call a pair (A, g),

where A ⊆ B is infinite and g : [A]n → ω × 2p, a precanonical pair for f if:

(1) For all x ∈ [A]n with g(x) = (c, q) where 0 ≤ q < p, we have f(x, a) = (c, q) for all a ∈ A with a > x.

(2) For all x ∈ [A]n with g(x) = (d, q) where p ≤ q < 2p, we have π2(f(x, a)) = q − p for all a ∈ A with

a > x.

(3) For all x1, x2 ∈ [A]n with g(x1) = (d1, q) and g(x2) = (d2, q) where p ≤ q < 2p, and all a1, a2 ∈ A with

a1 > x1 and a2 > x2,

(a) If a1 6= a2, then f(x1, a1) 6= f(x2, a2)

(b) If a1 = a2, then f(x1, a1) = f(x2, a2)↔ d1 = d2.

We first show that the above definition of “precanonical pair” allows our outline to succeed.

Claim 3.1.5. Suppose that n, p ≥ 1, B ⊆ ω is infinite, f : [B]n+1 → ω× p, and (A, g) is a precanonical pair

for f . Suppose that C ⊆ A is u-canonical for g, where u ⊆ n.

(1) If π2(g([C]n)) = {q} where 0 ≤ q < p, then C is u-canonical for f (now viewing u as a subset of n+1).

(2) If π2(g([C]n)) = {q} where p ≤ q < 2p, then C is (u ∪ {n})-canonical for f .

Proof. (1) For any x ∈ [C]n and a ∈ C with x < a, we have π2(f(x, a)) = π2(g(x)) = q by condition (1)

of Definition 3.1.4, hence C is homogeneous for π2 ◦ f . Let x1, x2 ∈ [C]n, a1, a2 ∈ C with x1 < a1 and

x2 < a2. By condition (1) of Definition 3.1.4, we have f(x1, a1) = g(x1) and f(x2, a2) = g(x2). Therefore,

f(x1, a1) = f(x2, a2)↔ g(x1) = g(x2)↔ x1 � u = x2 � u. Hence, C is u-canonical for f .

(2) For any x ∈ [C]n and a ∈ C with x < a, we have π2(f(x, a)) = q − p by condition (2) of Definition

3.1.4, hence C is homogeneous for π2 ◦ f . Let x1, x2 ∈ [C]n, a1, a2 ∈ C with x1 < a1 and x2 < a2. Suppose
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first that x1 � u = x2 � u and a1 = a2. Then g(x1) = g(x2) and a1 = a2. Therefore, by condition (3b) of

Definition 3.1.4, we have f(x1, a1) = f(x2, a2). Suppose now that x1 � u 6= x2 � u or a1 6= a2. If a1 6= a2, then

f(x1, a1) 6= f(x2, a2) by condition (3a) of Definition 3.1.4. If x1 � u 6= x2 � u and a1 = a2, then g(x1) 6= g(x2)

and a1 = a2, so f(x1, a1) 6= f(x2, a2) by condition (3b) of Definition 3.1.4. Therefore, f(x1, a1) = f(x2, a2)

if and only if x1 � u = x2 � u and a1 = a2, so C is (u ∪ {n})-canonical for f .

Next, we show that precanonical pairs exist by a method along the lines of Proof 1 of Proposition 2.2.5.

We build a precanonical pair (A, g) in stages which consist of selecting a new element for A and thinning

out the set of potential later elements to make them acceptable to the new element and its chosen color. To

facilitate this construction, we first define a notion of precanonical triple which will provide an approximation

to a desired precanonical pair.

Definition 3.1.6. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → ω× p. We call a triple (z, I, g)

where z ⊆ B is finite, I ⊆ B is infinite, z < I, and g : [z]n → ω × 2p, a precanonical triple for f if:

(1) For all x ∈ [z]n with g(x) = (c, q) where 0 ≤ q < p, we have f(x, a) = (c, q) for all a ∈ z∪ I with a > x.

(2) For all x ∈ [z]n with g(x) = (d, q) where p ≤ q < 2p, we have π2(f(x, a)) = q − p for all a ∈ z ∪ I with

a > x.

(3) For all x1, x2 ∈ [z]n with g(x1) = (d1, q) and g(x2) = (d2, q) where p ≤ q < 2p, and all a1, a2 ∈ z ∪ I

with a1 > x1 and a2 > x2,

(a) If a1 6= a2, then f(x1, a1) 6= f(x2, a2)

(b) If a1 = a2, then f(x1, a1) = f(x2, a2)↔ d1 = d2.

Proposition 3.1.7. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → ω × p. There exists a

precanonical pair (A, g) for f .

Proof. We inductively define a sequence (am, Im, gm)m∈ω such that

• am ∈ B.

• Im ⊆ B is infinite.

• gm : [{ai : i ≤ m}]n → ω × 2p.

• a0 < a1 < · · · < am−1 < am < Im ⊆ Im−1 ⊆ · · · ⊆ I1 ⊆ I0.

• g0 ⊆ g1 ⊆ · · · ⊆ gm.
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• ({ai : i ≤ m}, Im, gm) is a precanonical triple for f .

We begin by letting a−1 = −1, I−1 = B, and g−1 = ∅. Suppose that we have defined our sequence

through stage m ≥ −1. We first let am+1 = min(Im), I ′m = Im − {am+1}, and gm+1(x) = gm(x) for all

x ∈ [{ai : i ≤ m}]n. Let F = [{ai : i ≤ m+1}]n, and list the elements of F whose greatest element is am+1 as

x0 <n x1 <n · · · <n xl−1 (recall Definition 1.2.2), where l =
(
m+1
n−1

)
. If l = 0, let Im+1 = I ′m and gm+1 = gm.

Otherwise, we proceed inductively through the xk, defining gm+1(xk) and infinite sets J0, J1, . . . , Jl such

that I ′m = J0 ⊇ J1 ⊇ · · · ⊇ Jl along the way. Let J0 = I ′m. Suppose that k < l, and we have defined Jk.

First, since Jk is infinite, there exists q < p such that there are infinitely many b ∈ Jk with π2(f(xk, b)) = q.

Fix the least such q, and let Hk = {b ∈ Jk : π2(f(xk, b)) = q}.

Case 1: There exists c ∈ ω such that there are infinitely many b ∈ Hk with f(xk, b) = (c, q). In this

case, let gm+1(xk) = (c, q) and let Jk+1 = {b ∈ Hk : f(xk, b) = (c, q)}. Proceed to the next value of k ≤ l, if

it exists.

Case 2: Otherwise, for every c ∈ ω, there are only finitely many b ∈ Hk with f(xk, b) = (c, q). Let

D = {y ∈ F : y <n xk and π2(gm+1(y)) = q + p}, and notice that for each y ∈ D and each c ∈ ω, there is at

most one b ∈ Hk with f(y, b) = (c, q) (if max(y) < am+1, this follows from the fact that ({ai : i ≤ m}, Im, gm)

is a precanonical triple for f and Hk ⊆ Im, while if max(y) = am+1, say y = xi with 1 ≤ i < k, this follows

from the fact that Hk ⊆ Ji+1, so f(y, b1) 6= f(y, b2) for all b1, b2 ∈ Hk with b1 6= b2 by construction). We

now inductively define an increasing h : ω → Hk such that f(xk, h(i)) 6= f(y, h(j)) whenever i 6= j ∈ ω and

y ∈ D∪{xk}. Let h(0) = min(Hk). Suppose that we have defined h(t). By the assumption of Case 2 and the

above comments, there exists b ∈ Hk with b > h(t) such that f(xk, b) /∈ {f(y, h(i)) : y ∈ D∪{xk}, 0 ≤ i ≤ t}

and f(y, b) /∈ {f(xk, h(i)) : 0 ≤ i ≤ t} for all y ∈ D (since each of these sets is finite), and we let h(t + 1) be

the least such b. Let H ′
k = {h(t) : t ∈ ω}.

Subcase 1: There exists y ∈ D such that {b ∈ H ′
k : f(xk, b) = f(y, b)} is infinite. In this case, choose the

least such y (under the ordering <n), let gm+1(xk) = gm+1(y), and let Jk+1 = {b ∈ H ′
k : f(xk, b) = f(y, b)}.

Proceed to the next value of k < l, if it exists.

Subcase 2: Otherwise, for every y ∈ D, there are only finitely many b ∈ H ′
k with f(xk, b) = f(y, b).

Thus, there are only finitely many b ∈ H ′
k such that there exists y ∈ D with f(xk, b) = f(y, b). Let

gm+1(xk) = (d, q + p), where d is least such that gm+1(y) 6= (d, q + p) for all y ∈ D and let Jk+1 = {b ∈ H ′
k :

f(xk, b) 6= f(y, b) for all y ∈ D}. Proceed to the next value of k < l, if it exists.

Once we reach k = l, we let Im+1 = Jl. One easily checks that the invariants are maintained (i.e. that

am < am+1 < Im+1 ⊆ Im, gm ⊆ gm+1, and ({ai : i ≤ m + 1}, Im+1, gm+1) is a precanonical triple for f).

This completes stage m + 1.
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Finally, let A = {am : m ∈ ω} and g =
⋃

m∈ω gm. Then (A, g) is a precanonical pair for f .

Proof of Theorem 3.1.3. The proof is by induction on n. Suppose that n = 1 so that we have f : B → ω× p.

Fix an infinite A ⊆ B and q < p such that π2(f(A)) = {q}. If there exists a c ∈ ω such that there are

infinitely many a ∈ A with f(a) = (c, q), let C = {a ∈ A : f(a) = (c, q)}, and notice that f(a1) = f(a2)

for all a1, a2 ∈ C, so C is ∅-canonical for f . Otherwise, there are infinitely many c ∈ ω such that there is

an a ∈ A with f(a) = (c, q). Letting C = {a ∈ A : f(a) 6= f(b) for all b < a with b ∈ A}, we see that

f(a1) 6= f(a2) for all a1, a2 ∈ C, so C is {0}-canonical for f .

Suppose that the theorem holds for n, and we’re given f : [B]n+1 → ω × p. By Proposition 3.1.7, there

exists a precanonical pair (A, g) for f . Applying the inductive hypothesis to g : [A]n → ω × 2p, there exists

C ⊆ A which is canonical for g. By Claim 3.1.5, C is canonical for f .

3.2 Computability-Theoretic Analysis

If we analyze the proof of Proposition 3.1.7 for a given computable B and computable f : [B]n → ω × p, we

can easily see that there exists a precanonical pair (A, g) for f with A ⊕ g ≤T 0′′′. It seems that we need

a 0′′′-oracle to decide the 3-quantifier (∃∀∃) question of whether to enter Case 1 or Case 2. However, by

making use of an r-cohesive set, we can lower the complexity to a 2-quantifier question.

Recall the characterization of the Turing degrees of jumps of r-cohesive sets from Theorem 2.2.10. The

Low Basis Theorem relative to 0′ yields an a� 0′ such that a′ = 0′′. Using this a in Theorem 2.2.10 yields

the following corollary.

Corollary 3.2.1 (Jockusch and Stephan [9]). There exists an r-cohesive set V such that V ′′ ≤T 0′′.

Below, we will need r-cohesive sets of low complexity inside a given infinite computable set. The following

easy lemma provides these.

Lemma 3.2.2. Suppose that B is an infinite computable set. If V is r-cohesive, then pB(V ) ⊆ B is r-cohesive

and pB(V ) ≡T V .

Proof. Notice that pB(V ) is infinite and pB(V ) ≡T V because pB is computable and strictly increasing.

Let Z be a computable set. Since V is r-cohesive and p−1
B (Z) is computable, either V ∩ p−1

B (Z) is finite or

V ∩ p−1
B (Z) is finite. If V ∩ p−1

B (Z) is finite, then V ⊆∗ p−1
B (Z), so pB(V ) ⊆∗ pB(p−1

B (Z)) ⊆ Z, and hence

pB(V ) ∩ Z is finite. If V ∩ p−1
B (Z) is finite, then V ⊆∗ p−1

B (Z), so pB(V ) ⊆∗ pB(p−1
B (Z)) ⊆ Z, and hence

pB(V ) ∩ Z is finite. It follows that pB(V ) is r-cohesive.
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Proposition 3.2.3. Suppose that n, p ≥ 1, B ⊆ ω is infinite and computable, and f : [B]n+1 → ω × p is

computable. There exists a precanonical pair (A, g) for f such that A⊕ g ≤T 0′′. Furthermore, if n = 1 and

a� 0′, then there exists a precanonical pair (A, g) for f with deg(A⊕ g) ≤ a.

Proof. By Corollary 3.2.1 and Lemma 3.2.2, there exists an r-cohesive set V ⊆ B such that V ′′ ≤T 0′′. For

each x ∈ [V ]n and each (c, q) ∈ ω × p, the set Z(c,q) = {b ∈ B : f(x, b) = (c, q)} is computable, so either

V ∩ Z(c,q) is finite or V ∩ Z(c,q) is finite.

We now carry out the above existence proof of a precanonical pair for f � [V ]n : [V ]n → ω × p using a

V ′′-oracle and characteristic indices (relative to V ) for all infinite sets. As we proceed through the proof,

the first noncomputable (relative to V ) step is the construction of Hk, where we need to find the least q < p

such that Hk = {b ∈ Jk : π2(f(xk, b)) = q} is infinite, which we can do using a V ′′-oracle. Next, we need

to decide whether to enter Case 1 or Case 2. By the last sentence of the above paragraph, we enter Case 1

if and only if (∃c)(∃m)(∀b)[b ∈ Hk ∧ b ≥ m → f(xk, b) = (c, q)]. Again, we can decide this question using

a V ′′-oracle. If we enter Case 2, the next noncomputable (relative to V ) step is the decision whether to

enter Subcase 1 or Subcase 2. Since D is finite, and for each y ∈ D we need to determine whether a given

V -computable set is infinite, we can again decide this question using a V ′′-oracle. The rest of the steps of

the proof are V -computable, so we end up with a precanonical pair (A, g) for f � [V ]n (hence for f) such

that A⊕ g ≤T V ′′ ≤T 0′′.

Suppose now that n = 1 and a � 0′. By Theorem 2.2.10 and Lemma 3.2.2, there exists an r-cohesive

set V ⊆ B such that deg(V )′ ≤ a. For each a ∈ B and q < p, the set Zq = {b ∈ B : π2(f(a, b)) = q} is

computable, so either V ∩ Zq is finite or V ∩ Zq is finite (since V is r-cohesive). Therefore, for each a ∈ V ,

limb∈V π2(f(a, b)) exists, and we denote its value by qa. Notice that we can use a V ′-oracle to compute qa

given a ∈ V . Similarly, for each a ∈ V and c ∈ ω, the set Zc = {b ∈ B : π1(f(a, b)) = c} is computable, so

either V ∩ Zc is finite or V ∩ Zc is finite. Therefore, for each a ∈ V , either limb∈V π1(f(a, b)) exists (and is

finite) or limb∈V π1(f(a, b)) =∞.

Let Y = {a ∈ V : limb∈V π1(f(a, b)) < ∞}. Notice that a ∈ Y if and only if (∃c)(∃m)(∀b)[(b ≥ m ∧ b ∈

V )→ π1(f(a, b)) = c], hence Y ∈ Σ0,V
2 .

Case 1: Y is infinite: Choose an infinite I ⊆ Y such that I ≤T V ′. For each a ∈ V , we can use a V ′-oracle

to determine whether a ∈ I, and if so to compute ca = limb∈V π1(f(a, b)). We now construct a precanonical

pair (A, g) for f using a V ′-oracle. First, let a0 be the least element of I and let g(a0) = (ca0 , qa0). If we have

already defined a0, a1, . . . , am, let am+1 be the least b ∈ I such that b > am and f(ai, b) = g(ai) = (cai
, qai

)

for all i with 0 ≤ i ≤ m, and let g(am+1) = (cam+1 , qam+1). Letting A = {am : m ∈ ω}, we see that (A, g) is

a precanonical pair for f � [V ]n (hence for f) such that deg(A⊕ g) ≤ deg(V )′ ≤ a.
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Case 2: Y is finite: Fix α such that limb∈V π1(f(a, b)) =∞ for all a ∈ V with a > α. We now construct

a precanonical pair (A, g) for f using a V ′-oracle. First, let a0 be the least element of V greater than α, and

let g(a0) = (0, p+ qa0). Suppose that we have already defined a0, a1, . . . , am and g(a0), g(a1), . . . , g(am), and

assume inductively that for all sufficiently large b ∈ V , we have

(1) For all i ≤ m, π2(f(ai, b)) = qai
.

(2) For all i, j, k ≤ m with i < k and qai
= qaj

, f(ai, ak) 6= f(aj , b).

(3) For all i, j ≤ m with qai = qaj , f(ai, b) = f(aj , b)↔ g(ai) = g(aj).

Using a V ′-oracle, let am+1 be the least b ∈ V such that b > am and (1), (2), and (3) hold for b. Let

D = {i ∈ ω : 0 ≤ i ≤ m and qai
= qam+1}. For each i ∈ D, the set Zi = {b ∈ B : b > am+1

and f(ai, b) = f(am+1, b)} is computable, so either V ∩ Zi is finite or V ∩ Zi is finite. Also, the set

Z∞ = {b ∈ B : b > am+1 and f(am+1, b) /∈ {f(ai, b) : i ∈ D}} is computable, so either V ∩ Z∞ is finite or

V ∩ Z∞ is finite. Putting this together with the fact that the sets in the list (V ∩ Zi)i∈D∪{∞} are pairwise

disjoint and have union equal to {b ∈ V : b > am+1}, it follows that exists exactly one j ∈ D ∪ {∞} with

V ∩Zj finite. Moreover, we can find this j using a V ′-oracle (by running through β ∈ B in increasing order

and asking a V ′-oracle if all elements of V greater than β lie in one fixed Zi). If j ∈ D, let g(am+1) = g(aj),

and if j =∞, let g(am+1) = (d, p + qam+1), where d is the least element of ω−{π1(g(ai)) : i ∈ D}. Then for

all sufficiently large b ∈ V , we have

(1) For all i ≤ m + 1, π2(f(ai, b)) = qai .

(2) For all i, j, k ≤ m + 1 with i < k and qai
= qaj

, f(ai, ak) 6= f(aj , b).

(3) For all i, j ≤ m + 1 with qai
= qaj

, f(ai, b) = f(aj , b)↔ g(ai) = g(aj).

Hence, the induction hypothesis holds, and we may continue. Letting A = {am : m ∈ ω}, we see that (A, g)

is a precanonical pair for f � [V ]n (hence for f) such that deg(A⊕ g) ≤ deg(V )′ ≤ a.

We are now in a position to give upper bounds on the Turing degrees of canonical sets for computable

f . We prove the result in relativized form to facilitate the induction.

Theorem 3.2.4. Suppose that X ⊆ ω, n, p ≥ 1, B ⊆ ω is infinite and X-computable, and f : [B]n → ω × p

is X-computable. If n = 1, then there exists an X-computable set C ⊆ B canonical for f . If n ≥ 2 and

a� deg(X)(2n−3), there exists a set C ⊆ B canonical for f such that deg(C) ≤ a.
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Proof. We prove the theorem by induction on n. First, if n = 1, notice that the set C produced in the base

case of the proof of Theorem 3.1.3 is X-computable if both B and f are. Suppose now that n = 2, B and

f : [B]2 → ω × p are X-computable, and a � deg(X)′. By Proposition 3.2.3 relativized to X, there exists

a precanonical pair (A, g) for f with deg(A ⊕ g) ≤ a. By the inductive hypothesis, there exists a set C

canonical for g : [A]1 → ω × 2p with deg(C) ≤ deg(A⊕ g) ≤ a. By Claim 3.1.5, C is canonical for f .

Suppose that n ≥ 2 and the theorem holds for n. Suppose that B and f : [B]n+1 → ω × p are X-

computable, and a � deg(X)(2n−1). By Proposition 3.2.3 relativized to X, there exists a precanonical

pair (A, g) for f with A ⊕ g ≤ X ′′. Applying the inductive hypothesis to g : [A]n → ω × 2p, there exists

C ⊆ A canonical for g : [A]n → ω × 2p with deg(C) ≤ a since a � deg(X)(2n−1) = (deg(X)′′)(2n−3) ≥

deg(A⊕ g)(2n−3). By Claim 3.1.5, C is canonical for f .

We immediately obtain bounds for the location of canonical sets in the arithmetical hierarchy. These

bounds will be improved in the next section.

Corollary 3.2.5. Suppose that n ≥ 2, p ≥ 1, B ⊆ ω is infinite and computable, and f : [B]n → ω × p is

computable. There exists a ∆0
2n−1 set C ⊆ B canonical for f .

Proof. As noted in the Chapter 2, a relativization of Theorem 2.1.4 implies that 0(2n−2) � 0(2n−3). There-

fore, by Theorem 3.2.4, there exists a set C ⊆ B canonical for f such that deg(C) ≤ 0(2n−2). Any such C is

∆0
2n−1.

The proof of Proposition 3.2.3 for the case n = 1 relied on the ability to form a set of reasonably low

complexity which either consisted entirely of elements needing to be assigned finitary colors, or entirely of

elements needing to be assigned infinitary colors. We next show that this special feature of n = 1 is essential

to finding precanonical pairs below any a� 0′.

Theorem 3.2.6. There exists a computable f : [ω]3 → ω such that deg(A) ≥ 0′′ whenever (A, g) is a

precanonical pair for f .

Proof. By Proposition 2.2.19, there exists a c.e. h0 : [ω]2 → 2 (that is, {x ∈ [ω]2 : h0(x) = 1} is c.e.) such

that for all sets H homogeneous for h0, we have h0([H]2) = {0} and H ≥T 0′. By the same result relative

to 0′, there exists a 0′-c.e. h1 : [ω]2 → 2 (that is, {x ∈ [ω]2 : h1(x) = 1} is 0′-c.e.) such that for all sets H

homogeneous for h1, we have h1([H]2) = {0} and H ⊕ 0′ ≥T 0′′.

Define h : [ω]2 → 2 by

h(x) =


1 if either h0(x) = 1 or h1(x) = 1

0 otherwise

29



Notice that {x ∈ [ω]2 : h(x) = 1} is 0′-c.e. Suppose that H is homogeneous for h. Then h([H]2) = {0}

because if h([H]2) = {1}, then an application of Ramsey’s Theorem to the function h2 : [H]2 → 2 given by

h2(x) =


0 if h0(x) = 1

1 if h0(x) = 0 and h1(x) = 1

would give an infinite set I such that either h1([I]2) = {1} or h2([I]2) = {1}, a contradiction. Thus, H is

homogeneous for both h1 and h2. It follows that H ≥T 0′ and hence H ≥T H ⊕ 0′ ≥T 0′′.

Since {x ∈ [ω]2 : h(x) = 1} is 0′-c.e., it is Σ0
2, so there exists a computable R(x, a, b) such that h(x) =

1↔ (∃a)(∀b)R(x, a, b) for all x ∈ [ω]2. Define f : [ω]3 → ω as follows. Given x ∈ [ω]2 and s ∈ ω with x < s,

let

f(x, s) =


(µa < s)(∀b < s)R(x, a, b) if (∃a < s)(∀b < s)R(x, a, b)

s otherwise

Notice that f is computable. Furthermore, for all x ∈ [ω]2, we have h(x) = 1 ↔ lims f(x, s) exists and is

finite, and h(x) = 0↔ lims f(x, s) =∞. Suppose that (A, g) is a precanonical pair for f . For any y ∈ [A]2,

we either have f(y, a1) = f(y, a2) for all a1, a2 ∈ A with y < a1 < a2 (if π2(g(y)) = 0), or f(y, a1) 6= f(y, a2)

for all a1, a2 ∈ A with y < a1 < a2 (if π2(g(y)) = 1). Therefore, given y ∈ [A]2, if we let a1, a2 ∈ A be least

such that y < a1 < a2, we have h(y) = 1 ↔ f(y, a1) = f(y, a2) and h(y) = 0 ↔ f(y, a1) 6= f(y, a2). Hence,

h � [A]2 : [A]2 → 2 is A-computable. Since every set H homogeneous for h � [A]2 satisfies h([H]2) = {0}, it

follows from [12, Theorem 5.11] (relativized to A) that h � [A]2, and hence h itself, has an A-computable

homogeneous set. Since every set homogeneous for h has degree above 0′′, we have deg(A) ≥ 0′′.

Therefore, the bounds for canonical sets given by Theorem 3.2.4 are the best possible from an effective

analysis of the above proof of the Canonical Ramsey Theorem. We show in Chapter 4 that the bound given

by Theorem 3.2.4 for exponent 2 is sharp.

3.3 Arithmetical Bounds

Corollary 3.2.5 provided bounds in the arithmetical hierarchy for canonical sets for computable f : [ω]n →

ω × p. In particular, we established that every computable f : [ω]2 → ω has a ∆0
3 canonical set. We first

improve this result by showing that every computable f : [ω]2 → ω × p has a Π0
2 canonical set.

Our proof of this result resembles in broad outline Jockusch’s proof of Theorem 2.2.22, but requires

significant care. We first outline the idea of the proof. For simplicity, assume that f : [ω]2 → ω. Using a
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0′-oracle, we enumerate the complement of a set A, which will be part of a precanonical pair for f . Instead

of using an oracle to decide what color to assign to a new element, we blindly assign a color to a new

element, hoping that the corresponding thinned set will be infinite, and continue. If we ever discover that

the corresponding set is finite using a 0′-oracle, we change the color, and discard all of the work performed

after assigning the bad color.

As long as we proceed through the possible colors intelligently, this outline will work, and will produce an

infinite Π0
2 set A which is part of a precanonical pair. However, if we proceed through the colors naively, we

may not be able to extract a Π0
2 canonical set from A. For example, suppose that we first proceed through

the finitely many possible infinitary colors (there are only finitely many because all infinitary colors distinct

from the ones assigned to previous elements are equivalent), and then proceed through the finitary colors in

increasing order. If at the end of this construction every color is assigned to only finitely many elements of

A, it seems impossible to drop elements in the construction to thin out A to a Π0
2 canonical set. We want

to drop elements that repeat earlier colors, but there does not seem to be a way to safely do this since the

color at any given stage may change.

We thus carry out the construction in a slightly less intuitively natural manner which will allow us to

extract a Π0
2 canonical set. The idea is to first assign a new element a new infinitary color, then infinitary

colors already in use by previous elements, then new finitary colors, and finally finitary colors already in

use by previous elements. Of course, there are infinitely many new finitary colors at any stage, so we need

a way to determine when to stop and move into used finitary colors. This can be done because the only

reason why we reject all of the infinitary colors for a number a is because the set {f(a, b) : b ∈ Z} (where

Z is the currently thinned out out we are working inside) is bounded (see Lemma 3.3.3 below), and we can

find a bound using a 0′-oracle. Following this strategy, we will be able to extract a Π0
2 canonical set from A.

For example, if there are infinitely many distinct infinitary colors, we can perform the construction with the

additional action of dropping any element from our final set if it ever needs to change color. This will result

in a Π0
2 {0, 1}-canonical set. On the other hand, if there are finitely many distinct infinitary colors, and one

infinitary color d which occurs infinitely often, then for the least such d we can perform the construction,

dropping any element from our final set if it ever needs to take on a finitary color or a used infinitary color

greater than d. Modulo finitely many mistakes, this will result in a Π0
2 {1}-canonical set. The remaining

cases are handled in a similar manner.

We now carry out the above sketch in the more general setting of a computable f : [B]2 → ω × p so that

we can lift the result to higher exponents.

Theorem 3.3.1. Suppose that p ≥ 1, B ⊆ ω is infinite and computable, and f : [B]2 → ω×p is computable.
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There exists a Π0
2 set C ⊆ B canonical for f .

Proof. We first use a 0′-oracle construction to enumerate the complement of an infinite set A = {a0 < a1 <

a2 < . . . } ⊆ B. The construction is a movable marker construction using a 0′-oracle. We denote by as
i the

position of the (i+1)st marker Λi at the beginning of stage s. At the beginning of each stage s, we will have

a number ns such that the markers currently having a position are exactly the Λi for i < ns, and for each

i < ns, we will have numbers es
i and qs

i with qs
i < 2p. Let βs be the greatest position of any marker up to

stage s (βs = 0 if s = 0), and let ms = max({0} ∪ {π1(f(b1, b2)) : b1 < b2 ≤ βs}). Given these and k ≤ ns,

we say that a number b is k-acceptable at s if

• b ∈ B.

• b > βs.

• For all i < k with qs
i < p, f(as

i , b) = (es
i , q

s
i ).

• For all i < k with qs
i ≥ p, π2(f(as

i , b)) = qs
i − p.

• For all i < k with qs
i ≥ p, π1(f(as

i , b)) > ms.

• For all i, j < k with qs
i = qs

j ≥ p, f(as
i , b) = f(as

j , b)↔ es
i = es

j .

Construction: First set n0 = 0. Stage s ≥ 0: Assume inductively that we have ns such that the markers

currently having a position are exactly the Λi for i < ns, along with es
i and qs

i for all i < ns. Enumerate

into A all numbers b ≤ βs such that b 6= as
i for all i < ns. Using a 0′-oracle, let ks be the largest k ≤ ns such

that there exists a number which is k-acceptable at s. Note that ks exists because every sufficiently large

element of B is 0-acceptable at s. For each q < 2p, let Es
q = {es

i : i < ks and qs
i = q}.

Case 1: ks = ns: Set ns+1 = ns + 1 and place marker Λns on the least ks-acceptable number. Leave

all markers Λi with i < ns in place, and let es+1
i = es

i and qs+1
i = qs

i for all i < ns. Also, let qs+1
ns = 2p− 1

and let es+1
ns = min(ω − Es

2p−1). (Place a new marker, and give it the first new infinitary color in the last

column.)

Case 2: ks < ns: Set ns+1 = ks + 1 and detach all markers Λi with ks < i < ns. Leave all markers Λi

with i ≤ ks in place and let es+1
i = es

i and qs+1
i = qs

i for all i < ks. Let a∗ = as
ks , e∗ = es

ks and q∗ = qs
ks . We

now have nine subcases to decide the values es+1
ks and qs+1

ks : (Change a color, column, or both.)

Subcase 2.1: q∗ ≥ p, Es
q∗ 6= ∅ and e∗ /∈ Es

q∗ : Let qs+1
ks = q∗ and es+1

ks = min Es
q∗ . (Take the first used

infinitary color for this column.)

Subcase 2.2: q∗ ≥ p, e∗ ∈ Es
q∗ , and e∗ 6= maxEs

q∗ : Let qs+1
ks = q∗ and es+1

ks = min{d ∈ Es
q∗ : d > e∗}.

(Take the next used infinitary color for this column.)
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Subcase 2.3: q∗ ≥ p and either Es
q∗ = ∅ or e∗ = maxEs

q∗ : Let qs+1
ks = q∗−1 and es+1

ks = min(ω−Es
q∗−1).

(Move either to the next infinitary column, or move to the last finitary column, and assign the first unused

color.)

Subcase 2.4: q∗ < p, e∗ /∈ Es
q∗ , and there exists b which is ks-acceptable at s with f(a∗, b) > e∗: Let

qs+1
ks = q∗ and es+1

ks = min{c ∈ ω : c /∈ Es
q∗ and c > e∗}. (Take the next unused finitary color for this

column.)

Subcase 2.5: q∗ < p, e∗ /∈ Es
q∗ , Es

q∗ 6= ∅, and every b which is ks-acceptable at s satisfies f(a∗, b) ≤ e∗:

Let qs+1
ks = q∗ and es+1

ks = minEs
q∗ . (Take the first used finitary color for this column.)

Subcase 2.6: q∗ < p, e∗ ∈ Es
q∗ , and e∗ 6= max Es

q∗ : Let qs+1
ks = q∗ and es+1

ks = min{c ∈ Es
q∗ : c > e∗}.

(Move to the next used finitary color for this column.)

Subcase 2.7: 0 < q∗ < p, Es
q∗ = ∅, and every b which is ks-acceptable at s satisfies f(as

ks , b) ≤ e∗: Let

qs+1
ks = q∗ − 1 and es+1

ks = min(ω − Es
q∗−1). (Move to the next finitary column, and assign the first unused

color.)

Subcase 2.8: 0 < q∗ < p, e∗ ∈ Es
q∗ , and e∗ = maxEs

q∗ : Let qs+1
ks = q∗ − 1 and es+1

ks = min(ω − Es
q∗−1).

(Move to the next finitary column, and assign the first unused color.)

Subcase 2.9: Otherwise: Let qs+1
ks = 0 and es+1

ks = e∗ + 1. (This case won’t occur for any true element

of A.)

End Construction.

Claim 3.3.2. For all k ∈ ω, each limit lims as
k, lims qs

k, and lims es
k exists, so we may define ak = lims as

k,

qk = lims qs
k, and ek = lims es

k.

Proof. We proceed by induction. We assume that the claim is true for all i < k and prove it for k. Let t

be the least stage such that for all i < k and all s ≥ t, we have as
i = ai, qs

i = qi, and es
i = ei. At stage t,

marker Λk is placed on a number b via Case 1 of the construction (since otherwise there exists i < k such

that either qt+1
i 6= qt

i or et+1
i 6= et

i), so nt+1 = k + 1. Since each of as
i , qs

i , and es
i for i < k have come to their

limits, we must have ks ≥ k and hence ns ≥ k + 1 for all s > t by construction (because if s > t is least such

that ks < k, then we enter Case 2, so one of qs
ks or es

ks changes). Therefore, by construction, we never again

move marker Λk, so as
k = at+1

k for all s ≥ t + 1 and we may let ak = lims as
k.

We now show that lims qs
k and lims es

k both exist by showing that ks = k for only finitely many s > t.

This suffices, because qs
k and es

k change only at such s. Suppose then that ks = k for infinitely many s > t.

Let Z = {(d, q) : p ≤ q < 2p and d ∈ Et
q ∪ {min(ω − Et

q)} Following the construction through the first

|Z| many stages s > t with ks = k, we see that for all (d, q) ∈ Z, there is a unique s(d,q) > t such that
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e
s(d,q)

k = d, q
s(d,q)

k = q, and ks(d,q) = k. For each (d, q) ∈ Z, since ks(d,q) = k, there are no numbers which are

(k + 1)-acceptable at s(d,q). Let r1 = max{s(d,q) : (d, q) ∈ Z}. We need the following lemma.

Lemma 3.3.3. For all s ≥ r1, if b is k-acceptable at s, then π1(f(ak, b)) ≤ mr1 .

Proof. Suppose that the lemma is false. Then there exists s ≥ r1 and a b which is k-acceptable at s such

that π1(f(ak, b)) > mr1 . Let q = p+π2(f(ak, b)). For each d with (d, q) ∈ Z, notice that b is k-acceptable at

s(d,q) (since t ≤ s(d,q) ≤ r1 ≤ s), but not (k + 1)-acceptable at s(d,q). Therefore, for each d with (d, q) ∈ Z,

either π1(f(ak, b)) ≤ ms(d,q) ≤ mr1 , or there exists i < k with qi = q such that f(ai, b) = f(ak, b)↔ ei 6= d.

Since π1(f(ak, b)) > mr1 , it follows that for all d with (d, q) ∈ Z, there exists i < k with qi = q such that

f(ai, b) = f(ak, b) ↔ ei 6= d. Letting d = min(ω − Et
q), we have ei 6= d for all i < k with qi = q, so we

may choose j < k with qj = q and f(aj , b) = f(ak, b). Letting d = ej , there exists i < k with qi = q such

that f(ai, b) = f(ak, b) ↔ ei 6= ej . Since f(aj , b) = f(ak, b), this implies that f(ai, b) = f(aj , b) ↔ ei 6= ej ,

contrary to the fact that b is k-acceptable at s. This is a contradiction, so the proof of the lemma is

complete.

We now return to the proof of the claim. Notice that at stage r1, we set qr1+1
k = q = p−1, so qs+1

k ≤ qs
k < p

for all s > r1 by construction. Now, as we continue to follow the construction through stages s with ks = k,

we must eventually reach a stage s > r1 with ks = k such that we do not enter Subcase 2.4 (otherwise, we

enter Subcase 2.4 infinitely often, so after mr1 such iterations, we reach an s ≥ r1 with ks = k and es
k ≥ mr1

where every b which is k-acceptable at s satisfies π1(f(ak, b)) ≤ mr1 ≤ es
k by Lemma 3.3.3). Let r2 be the

least such stage. If Et
q = ∅, then we either enter Subcase 2.7 and set qr2+1

k = q − 1 (if q > 0), or we enter

Subcase 2.9 (if q = 0). If Et
q 6= ∅, then at stage r2 we enter Subcase 2.5 and then repeatedly enter Subcase

2.6 whenever ks = k until we run through all elements of Et
q, at which point we either enter Subcase 2.8 or

Subcase 2.9. Therefore, in either case, we reach a stage r3 ≥ r2 where we either set qr3+1
k = q−1 or we enter

Subcase 2.9. Now, the above argument works for the new value of q, so running through each q with q < p

in reverse order, we see that we eventually reach a stage r4 where we enter Subcase 2.9.

Let b be the least number which is k-acceptable at r4 (such a number exists because otherwise we have

kr4 < k, which we know is not true). By construction, there exists a stage s0 ≤ r4 such that es0
k =

π1(f(ak, b)), qs0
k = π2(f(ak, b)), and ks0 = k. Then, b is (k + 1)-acceptable at s0, so ks0 ≥ k + 1, a

contradiction. It follows that there could not have been infinitely many s > t with ks = k, so the proof of

the claim is complete.

Claim 3.3.4. Let q < 2p be greatest such that {k : qk = q} is infinite.
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(1) Suppose that q ≥ p and {ek : qk = q} is infinite. Then {ak : qk = q and ek 6= ei for all i < k with

qi = q} is a Π0
2 {0, 1}-canonical set for f .

(2) Suppose that (1) does not hold and q ≥ p. Then there exists d such that {k : qk = q and ek = d} is

infinite, and for the least such d, the set {ak : qk = q and ek = d} is a Π0
2 {1}-canonical set for f .

(3) Suppose that q < p and {ek : qk = q} is infinite. Then {ak : qk = q and ek 6= ei for all i < k with

qi = q} is a Π0
2 {0}-canonical set for f .

(4) Suppose that (3) does not hold, but q < p. Then there exists c such that {k : qk = q and ek = c} is

infinite, and for the least such c, the set {ak : qk = q and ek = c} is a Π0
2 ∅-canonical set for f .

Proof. (1) Suppose that q ≥ p and {ek : qk = q} is infinite. Let C = {ak : qk = q and ek 6= ei for all i < k

with qi = q}. Notice that C is infinite because {ek : qk = q} is infinite. To see that C is Π0
2, perform the

above construction, with the additional action of enumerating the number as
ks at stage s if either

• qs
ks < q.

• qs
ks = q and we enter Case 2.

Then ak is not enumerated if and only if either

• qk > q.

• qk = q and ek 6= ei for all i < k with qi = q.

because at the first s (if any) with as
k = ak and qs

k = q, we set es
k to a number different from ei for all

i < k with qi = q, and entrance into Case 2 at any point will result either in qk < q or ek = ei for some

i < k with qi = q. Since {ak : qk > q} is finite, C is Π0
2 (because removing finitely many elements from a

Π0
2 set leaves a Π0

2 set). Suppose that i < k, j < l, k ≤ l, and ai, aj , ak, al ∈ C. Let s be least such that

as
l = al. If k < l, then al is (max{j, k}+1)-acceptable at s by construction, hence f(aj , al) > ms ≥ f(ai, ak).

If k = l and i 6= j, then ak is (max{i, j} + 1)-acceptable at s, hence f(ai, ak) = f(aj , ak) ↔ ei = ej , so

f(ai, ak) 6= f(aj , ak) because ei 6= ej . Therefore, f(ai, ak) = f(aj , al) ↔ i = j and k = l ↔ ai = aj and

ak = al. It follows that C is a Π0
2 {0, 1}-canonical set for f .

(2) Suppose that (1) does not hold, i.e. {ek : qk = q} is finite, and q ≥ p. Let d be least such that

{k : qk = q and ek = d} is infinite, and let C = {ak : qk = q and ek = d}. To see that C is Π0
2, perform the

above construction, with the additional action of enumerating the number as
ks at stage s if either

• qs
ks < q.
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• qs
ks = q and we enter Subcase 2.2 and set es+1

ks to a number greater than d.

Then ak is not enumerated if and only if either

• qk > q.

• qk = q and ek 6= ei for all i < k with qi = q.

• qk = q and ek ≤ d.

because at the first s (if any) with as
ks = ak and qs

k = q, we set es
k to a new number, after which the value

of es
k runs through the set {ei : i < k and qi = q} in increasing order until, if ever, we set qt

k < q. Since

{ak : qk > q} ∪ {ak : qk = q, ek 6= d, and ek 6= ei for all i < k with qi = q} ∪ {ak : qk = q and ek < d}

is finite, it follows that C is Π0
2 (because removing finitely many elements from a Π0

2 set leaves a Π0
2 set).

Suppose that i < k, j < l, k ≤ l, and ai, aj , ak, al ∈ C. Let s be least such that as
l = al. If k < l, then

al is (max{j, k} + 1)-acceptable at s by construction, hence f(aj , al) > ms ≥ f(ai, ak). If k = l then ak

is (max{i, j} + 1)-acceptable at s, hence f(ai, ak) = f(aj , ak) ↔ ei = ej , so f(ai, ak) = f(aj , ak) because

ei = d = ej . Therefore, f(ai, ak) = f(aj , al)↔ k = l ↔ ak = al. It follows that C is a Π0
2 {1}-canonical set

for f .

(3) Suppose that q < p and {ek : qk = q} is infinite. Let C = {ak : qk = q and ek 6= ei for all i < k with

qi = q}. Notice that C is infinite because {ek : qk = q} is infinite. To see that C is Π0
2, perform the above

construction, with the additional action of enumerating the number as
ks at stage s if either

• qs
ks < q.

• qs
ks = q and we enter Subcase 2.5.

Then ak is not enumerated if and only if either

• qk > q.

• qk = q and ek 6= ei for all i < k with qi = q.

because at the first s (if any) with as
ks = ak and qs

k = q, we initially set es
k to a number different from ei for

all i < k with qi = q, and et
k will continue to have this property until we either enter into Subcase 2.5 or we

set qt+1
k < q, at which point et

k will never again have this property. Since {ak : qk > q} is finite, it follows (by

removing this finite set) that C is Π0
2. Suppose that i < j and ai, aj ∈ C. Let s be least such that as

j = aj .

By construction, aj is (i + 1)-acceptable at s, hence f(ai, aj) = (ei, qi) = (ei, q). Therefore, whenever i < k,

j < l, and ai, aj , ak, al ∈ C, we have f(ai, ak) = f(aj , al) ↔ (ei, q) = (ej , q) ↔ ei = ej ↔ i = j ↔ ai = aj .

It follows that C is a Π0
2 {0}-canonical set for f .
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(4) Suppose that (3) does not hold, i.e. {ek : qk = q} is finite, and q < p. Let c be least such that

{k : qk = q and ek = c} is infinite, and let C = {ak : qk = q and ek = c}. To see that C is Π0
2, perform the

above construction, with the additional action of enumerating the number as
ks at stage s if either

• qs
ks < q.

• qs
ks = q and we enter Subcase 2.6 and set es+1

ks to a number greater than c.

Then ak is not enumerated if and only if either

• qk > q.

• qk = q and ek 6= ei for all i < k with qi = q.

• qk = q and ek ≤ c.

because at the first s (if any) with as
ks = ak and qs

k = q, we initially set es
k to a number different from ei for

all i < k with qi = q, and et
k will continue to have this property until et

k begins to run through {ei : i < k

and qi = q} in increasing order until, if ever, we set qt
k < q. Since {ak : qk > q} ∪ {ak : qk = q, ek 6= c, and

ek 6= ei for all i < k with qi = q} ∪ {ak : qk = q and ek < c} is finite, it follows (by removing this finite

set) that C is Π0
2. Suppose that i < j and ai, aj ∈ C. Let s be least such that as

j = aj . By construction,

aj is (i + 1)-acceptable at s, hence f(ai, aj) = (ei, qi) = (c, q). Therefore, whenever i < k, j < l, and

ai, aj , ak, al ∈ C, we have f(ai, ak) = (c, q) = f(aj , al). It follows that C is a Π0
2 ∅-canonical set for f .

Again, using a relativized version of the result for exponent 2 and induction, we can get bounds for higher

exponents.

Theorem 3.3.5. Suppose that X ⊆ ω, n ≥ 2, p ≥ 1, B ⊆ ω is infinite and X-computable, and f : [B]n →

ω × p is X-computable. There exists a Π0,X
2n−2 set C canonical for f .

Proof. We prove the theorem by induction on n. Theorem 3.3.1 relativized to X gives the result for n = 2.

Suppose that the theorem holds for n ≥ 2, and that B and f : [B]n+1 → ω × p are X-computable. By

Proposition 3.2.3 relativized to X, there exists a precanonical pair (A, g) for f with A⊕ g ≤T X ′′. Applying

the inductive hypothesis to g : [A]n → ω × 2p, there exists C ⊆ A canonical for g such that C is Π0,X′′

2n−2.

Notice that C is Π0,X
2n . By Claim 3.1.5, C is canonical for f .

Remark 3.3.6. By Claim 2.3.3, if n ≥ 1 and f : [ω]n → 2, then any set C canonical for f is homogeneous

for f . Therefore, for each n ≥ 2, there exists a computable f : [ω]n → 2 with no Σ0
n set canonical for f by

Theorem 2.2.22. It follows that Theorem 3.3.5 gives a sharp bound in the arithmetical hierarchy for n = 2.
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Chapter 4

The Regressive Function Theorem
and Computability Theory

4.1 h-Regressive Functions

In Chapter 2, we introduced regressive functions and the Regressive Function Theorem. For our purposes,

it will be convenient to relax the definition of a regressive function.

Definition 4.1.1. Suppose that n ≥ 1, h : ω → ω and B ⊆ ω is infinite. A function f : [B]n → ω is

h-regressive if for all x ∈ [ω]n, we have f(x) < h(min(x)) whenever h(min(x)) > 0, and f(x) = 0 whenever

h(min(x)) = 0.

Remark 4.1.2. Notice that a function f : [B]n → ω is regressive if and only if it is ι-regressive, where

ι : ω → ω is the identity function.

Definition 4.1.3. Suppose that n ≥ 1, h : ω → ω, B ⊆ ω is infinite, and f : [B]n → ω is h-regressive. A set

M is minhomogeneous for f if M ⊆ B, M is infinite, and for all x, y ∈ [M ]n with min(x) = min(y) we have

f(x) = f(y).

By making very minor changes to the proof of Claim 2.4.4, we obtain the following.

Claim 4.1.4. Suppose that n ≥ 1, h : ω → ω, B ⊆ ω is infinite, and f : [B]n → ω is h-regressive. If C ⊆ B

is canonical for f , then C is minhomogeneous for f .

Therefore, by the Canonical Ramsey Theorem, every h-regressive function has a minhomogeneous set.

Although h-regressive functions will be a convenient tool for us, their minhomogeneous sets provide no more

complexity than those for regressive functions.

38



Proposition 4.1.5. Suppose that n ≥ 1, h : ω → ω is computable, B ⊆ ω is infinite and computable, and

f : [B]n → ω is h-regressive and computable. There exists a computable regressive g : [B]n → ω such that any

set M ⊆ B minhomogeneous for g computes a minhomogeneous set for f .

Proof. We may assume that h is strictly increasing (otherwise, replace h by the function h∗ : ω → ω defined

by h∗(0) = h(0) and h∗(k + 1) = max({h′(k) + 1, h(k + 1)}), and notice that h∗ is computable and that f is

h∗-regressive). Define p : ω → ω by letting p(a) be the largest b < a such that h(b)+1 < a if there is exists a

b with h(b) + 1 < a, and letting let p(a) = 0 otherwise. Notice that p is computable, increasing, and satisfies

lima p(a) =∞.

Define g : [B]n → ω by setting

g(a1, . . . , an) =


f(p(a1), . . . , p(an)) + 1 if 0 < p(a1) < · · · < p(an)

0 otherwise

If g(a1, . . . , an) 6= 0, then 0 < p(a1) < · · · < p(an), hence

g(a1, . . . , an) = f(p(a1), . . . , p(an)) + 1

< h(p(a1)) + 1

< a1,

so g is regressive.

Suppose that M ⊆ B is minhomogeneous for g. Suppose that a1, a
′
1 ∈ M with a1 < a′1 and 0 <

p(a1) = p(a′1). Since lima p(a) = ∞, there exists a2 < a3 < · · · < an ∈ M such that a′1 < a2 and

0 < p(a1) = p(a′1) < p(a2) < p(a3) < · · · < p(an). Since M is minhomogeneous for g, we have

0 = g(a1, a
′
1, a3, . . . , an)

= g(a1, a2, a3, . . . , an)

= f(p(a1), p(a2), p(a3), . . . , p(an)) + 1

6= 0,

a contradiction. Hence, if a, b ∈M with a 6= b and 0 < p(a), p(b), then p(a) 6= p(b).

Since M is infinite, p is increasing and computable, and lima p(a) = ∞, it follows that the set p(M) is

infinite and p(M) ≤T M . Suppose that a1 < · · · < an, b1 < · · · < bn ∈ M with 0 < p(a1) < · · · < p(an),
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0 < p(b1) < · · · < p(bn) and p(a1) = p(b1). Since 0 < p(a1) = p(b1), we know from the above that a1 = b1.

Therefore, since M is minhomogeneous for g, we have

f(p(a1), . . . , p(an)) + 1 = g(a1, . . . , an)

= g(b1, . . . , bn)

= f(p(b1), . . . , p(bn)) + 1,

so f(p(a1), . . . , p(an)) = f(p(b1), . . . , p(bn)). It follows that p(M)\{0} is a minhomogeneous set for f which

is M -computable.

4.2 Upper Bounds

Although the Regressive Function Theorem follows immediately from the Canonical Ramsey Theorem, we

can obtain better bounds on the Turing degrees and position in the arithmetical hierarchy of minhomogeneous

sets for computable f using a direct proof similar to Proof 3 of Ramsey’s Theorem in Chapter 2. We follow

the outline by defining preminhomogeneous pairs, proving their utility and existence, and then applying

induction.

Definition 4.2.1. Suppose that n ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → ω is regressive. We call a pair

(A, g) where A ⊆ B is infinite and g : [A]n → ω, a preminhomogeneous pair for f if for all x ∈ [A]n and all

a ∈ A with x < a, we have f(x, a) = g(x).

Claim 4.2.2. Suppose that n ≥ 1, B ⊆ ω is infinite, f : [B]n+1 → ω is regressive, and (A, g) is a preminho-

mogeneous pair for f . Then g is regressive, and any M ⊆ A minhomogeneous for g is minhomogeneous for

f .

Proof. Given any x ∈ [A]n, fix a ∈ A with x < a and notice that g(x) = f(x, a) < min(x) if min(x) > 0

and g(x) = f(x, a) = 0 if min(x) = 0, so g is regressive. Suppose that M ⊆ A is minhomogeneous for

g. Fix x1, x2 ∈ [M ]n and a1, a2 ∈ M with x1 < a1, x2 < a2, and min(x1, a1) = min(x2, a2). We have

min(x1) = min(x2), hence f(x1, a1) = g(x1) = g(x2) = f(x2, a2). Therefore, M is minhomogeneous for

f .

Proposition 4.2.3. Suppose that n ≥ 1, B ⊆ ω is infinite and computable, f : [B]n+1 → ω is regressive and

computable, and a� 0′. There exists a preminhomogeneous pair (A, g) for f such that deg(A⊕ g) ≤ a. In

particular, there exists a preminhomogeneous pair (A, g) for f such that (A⊕ g)′ ≤T 0′′.
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Proof. By Theorem 2.2.10 and Lemma 3.2.2, we may fix an r-cohesive set V ⊆ B such that deg(V )′ ≤ a.

Suppose that x ∈ [B]n. We have f(x, a) ≤ min(x) for all a ∈ B, so the sets Zc = {a ∈ B : x < a and

f(x, a) = c} for c with 0 ≤ c ≤ min(x) are computable, pairwise disjoint, and have union {a ∈ B : x < a}.

Since V is r-cohesive, for each c with 0 ≤ c ≤ min(x), either V ∩Zc is finite or V ∩Zc is finite. Therefore, there

exists a unique cx with 0 ≤ cx ≤ min(x) such that V ∩Zcx
is finite. Moreover, notice that the function from

[B]n to ω given by x 7→ cx is V ′-computable (since given x ∈ [B]n, we can run through b ∈ B in increasing

order asking a V ′-oracle if all elements of V greater than b lie in a fixed Zc for some c with 0 ≤ c ≤ min(x)).

We use a V ′-oracle to inductively construct a preminhomogeneous pair (A, g) for f . Let a0, a1, . . . , an−1

be the first n elements of V . Suppose that m ≥ n− 1 and we have defined a0, a1, . . . , am. Using a V ′-oracle,

let am+1 be the least b ∈ V such that b > am and f(x, b) = cx for all x ∈ [{ai : i ≤ m}]n (notice that am+1

exists because V ⊆ B is infinite and f(x, b) = cx for all sufficiently large b ∈ V ). Let A = {am : m ∈ ω} and

define g : [A]n → ω by g(x) = cx. Then deg(A⊕ g) ≤ deg(V )′ ≤ a and (A, g) is a preminhomogeneous pair

for f .

The last statement follow from the fact that there exists a � 0′ with a′ ≤ 0′′ by relativizing the Low

Basis Theorem to 0′.

Remark 4.2.4. Proposition 4.2.3 can also be proved using an effective analysis of a proof using trees similar

to Proof 2 of Proposition 2.2.5.

Theorem 4.2.5. Suppose that X ⊆ ω, n ≥ 2, B ⊆ ω is infinite and X-computable, f : [B]n → ω is X-

computable, and a� deg(X)(n−1). There exists a set M ⊆ B minhomogeneous for f such that deg(M) ≤ a.

Proof. We prove the theorem by induction on n. First, suppose that n = 2, B and f : [B]2 → ω are X-

computable, and a � deg(X)′. By Proposition 4.2.3 relativized to X, there exists a preminhomogeneous

pair (A, g) for f with deg(A⊕ g) ≤ a. Since A is trivially minhomogeneous for g, it follows from Claim 4.2.2

that A is minhomogeneous for f .

Suppose that n ≥ 2 and the theorem holds for n. Suppose that B and f : [B]n+1 → ω are X-computable,

and a � deg(X)(n). By Proposition 4.2.3 relativized to X, there exists a preminhomogeneous pair (A, g)

for f with (A ⊕ g)′ ≤T X ′′. Applying the inductive hypothesis to g : [A]n → ω, there exists M ⊆ A

minhomogeneous for g with deg(M) ≤ a since a � deg(X)(n) = (deg(X)′′)(n−2) ≥ (deg(A ⊕ g)′)(n−2) =

deg(A⊕ g)(n−1). By Claim 4.2.2, M is minhomogeneous for f .

We can also use the above results to give bounds on the location of minhomogeneous sets in the arith-

metical hierarchy.
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Theorem 4.2.6. Suppose that X ⊆ ω, n ≥ 2, B ⊆ ω is infinite and X-computable, and f : [B]n → ω is

regressive and X-computable. Then f has a Π0,X
n minhomogeneous set.

Proof. We prove the theorem by induction on n. Theorem 3.3.1 relativized to X ⊆ ω together with Claim

2.4.4 gives the result for n = 2. Suppose that we know the theorem for n ≥ 2, and that B ⊆ ω is infinite

and X-computable, and f : [B]n+1 → ω is regressive and X-computable. By Proposition 4.2.3 relativized to

X, there exists a precanonical pair (A, g) for f with (A⊕ g)′ ≤T X ′′. Applying the inductive hypothesis to

g : [A]n → ω, there exists M ⊆ A minhomogeneous for g such that M is Π0,A⊕g
n . Then M is Π0,(A⊕g)′

n−1 , so it

follows that M is Π0,X′′

n−1 , and hence Π0,X
n+1. By Claim 4.2.2, M is minhomogeneous for f .

Remark 4.2.7. Theorem 4.2.6 in the case n = 2 can also be proved without appealing to Theorem 3.3.1

by using a more natural generalization of the proof of Theorem 2.2.22 in the case n = 2.

4.3 Lower Bounds

We next turn our attention to lower bounds, aiming to show that the bounds given by Theorem 4.2.5 and

Theorem 4.2.6 are sharp.

Theorem 4.3.1. There exists a computable regressive f : [ω]2 → ω such that deg(M)� 0′ for every set M

which is minhomogeneous for f .

Proof. By Proposition 4.1.5, it suffices to find a computable f : [ω]2 → ω and a computable h : ω → ω such

that f is h-regressive and deg(M)� 0′ for every set M which is minhomogeneous for f .

Let K = {e : ϕe(e) ↓} be the usual computably enumerable halting set, and let {Ks}s∈ω be a fixed

computable enumeration of K. Define f1 : ω2 → 2 by

f1(m, t) =


ϕKt

e,t (n) if m = 〈e, n〉 and ϕKt
e,t (n) ↓∈ {0, 1}

0 otherwise

Notice that f1 is computable. Define a computable f : [ω]2 → ω as follows. Given a, b ∈ ω with a < b, let

f(a, b) = 〈f1(0, b), f1(1, b), . . . , f1(a, b)〉. Notice that f is h-regressive, where h : ω → ω is the computable

function given by h(k) = max({0} ∪ {〈a0, a1, . . . , ak〉+ 1 : 0 ≤ ai ≤ 1 for i ≤ k}).

Suppose that M is a minhomogeneous set for f . For each e ∈ ω, define ge : ω → 2 as follows. Given

n ∈ ω, find the least ae,n, be,n ∈ M with 〈e, n〉 ≤ ae,n < be,n, and let ge(n) = f1(〈e, n〉, be,n). Notice that ge

is M -computable for each e ∈ ω.

42



Let e, n ∈ ω. Since M is minhomogeneous for f , we know that f(ae,n, b) = f(ae,n, b′) for all b, b′ ∈ M

with b, b′ > ae,n, so f1(〈e, n〉, b) = f1(〈e, n〉, b′) for all b, b′ ∈M with b, b′ > ae,n. Hence, if ϕK
e (n) ↓ ∈ {0, 1},

then ge(n) = f1(〈e, n〉, be,n) = ϕK
e (n) because f1(〈e, n〉, t) = ϕK

e (n) for all sufficiently large t ∈ ω.

Therefore, for all e ∈ ω, if ϕK
e is {0, 1}-valued, then ge is a total M -computable extension. It follows that

M computes a total extension of every partial {0, 1}-valued 0′-computable function, hence deg(M)� 0′ by

Lemma 2.1.6.

We can use the previous theorem to obtain lower bounds for exponents n ≥ 2.

Theorem 4.3.2. For every X ⊆ ω and n ≥ 2, there exists an X-computable regressive f : [ω]n → ω such

that deg(M ⊕X)� deg(X)(n−1) for every set M minhomogeneous for f .

Proof. We prove the result by induction on n. The case n = 2 follows by relativizing Theorem 4.3.1. Suppose

that the theorem holds for n ≥ 2. Fix a X ′-computable regressive g : [ω]n → ω such that deg(M ⊕X ′) �

(deg(X)′)(n−1) = deg(X)(n) for every set M which is minhomogeneous for g. By the Limit Lemma, there

exists a computable g1 : [ω]n+1 → ω such that lima g1(x, a) = g(x) for all x ∈ [ω]n and g1(y) ≤ min(y)

for all y ∈ [ω]n+1. By Proposition 2.2.18 relativized to X and the fact that n + 1 ≥ 3, there exists an

X-computable f1 : [ω]n+1 → 2 such that for all infinite sets H homogeneous for f1, we have f1([H]2) = {0}

and H ⊕X ≥T X ′. Define an X-computable f : [ω]n+1 → ω by

f(y) =


0 if f1(y) = 1

g1(y) + 1 if f1(y) = 0

Notice that f(y) ≤ g1(y) + 1 ≤ min(y) + 1 < min(y) + 2 for all y ∈ [ω]n+1, hence f is h-regressive, where

h : ω → ω is the computable function given by h(k) = k+2. By Proposition 4.1.5 relativized to X, it suffices

to show that deg(M ⊕X)� deg(X)(n) for all sets M minhomogeneous for f .

Suppose that M is minhomogeneous for f . For each a ∈M , let ca = f(a, x) for some (any) x ∈ [M ]n with

a < x. Let Z = {a ∈M : ca = 0}. Since f1([Z]n+1) = 1, it follows that Z is finite. For any a ∈M\Z, we have

ca 6= 0, hence f1([M\Z]n+1) = 0 and M ⊕X ≡T (M\Z)⊕X ≥T X ′. Furthermore, for any x ∈ [M\Z]n and

any b ∈M\Z with x < b, we have g1(x, b)+1 = f(x, b) = cmin(x), hence g(x)+1 = cmin(x) for all x ∈ [M\Z]n.

It follows that M\Z is minhomogeneous for g, hence deg(M ⊕X) ≥ deg(M ⊕X ′)� deg(X)(n).

As an immediate corollary of Theorem 4.3.2, we get the following corollary giving a lower bound for the

position of minhomogeneous sets in the arithmetical hierarchy.
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Corollary 4.3.3. For every n ≥ 2, there exists a computable regressive f : [ω]n → ω with no Σ0
n minhomo-

geneous set.

Proof. By Theorem 4.3.2 with X = ∅, there exists a computable regressive f : [ω]n → ω such that deg(M)�

0(n−1) for every set M minhomogeneous for f . Suppose that M is Σ0
n minhomogeneous set for f . Let

M1 ⊆ M be an infinite ∆0
n subset of M , and notice that M1 is minhomogeneous for f . Since M1 is ∆0

n, it

follows that deg(M1) ≤ 0(n−1). Thus, it is not the case that deg(M1)� 0(n−1), a contradiction. Therefore,

there is no Σ0
n set minhomogeneous for f .

Remark 4.3.4. Corollary 4.3.3 also follows from the corresponding result for Ramsey’s Theorem (Theorem

2.2.22). Fix f : [ω]n → 2 such that no Σ0
n set is homogeneous for f . Define f∗ : [ω]n → ω by letting

f∗(x) = f(x) if min(x) ≥ 2 and f∗(x) = 0 if min(x) < 2, and notice that f∗ is regressive. Suppose that M∗

is Σ0
n and minhomogeneous for f∗. Let M be an infinite ∆0

n subset of M∗ with 0, 1 /∈ M , and notice that

M is also minhomogeneous for f∗. Define g : M → ω by letting g(a) = g(x) for some (any) x ∈ [M ]n with

a = min(x), and notice that g ≤T M . If M0 = {a ∈ M : g(a) = 0} is infinite, then M0 is homogeneous for

f and M0 is ∆0
n (since M0 ≤T M), a contradiction. Otherwise, M1 = {a ∈ M : g(a) = 1} is infinite, so

M1 is homogeneous for f and M1 is ∆0
n (since M1 ≤T M), a contradiction. Therefore, there is no Σ0

n set

minhomogeneous for f∗.

Corollary 4.3.5. For every n ≥ 2, there exists a computable regressive f : [ω]n → ω such that every Π0
n

minhomogeneous set M satisfies deg(M) ≥ 0(n).

Proof. By Theorem 4.3.2 with X = ∅, there exists a computable regressive f : [ω]n → ω such that deg(M)�

0(n−1) for every set M minhomogeneous for f . If M is a Π0
n minhomogeneous set for f , then deg(M)� 0(n−1)

and deg(M) is c.e. relative to 0(n−1). Therefore, by the Arslanov Completeness Criterion, deg(M) ≥ 0(n).

Combining Theorem 4.2.5 and Claim 4.3.2, we obtain the following corollary, analogous to Corollary

2.1.7.

Corollary 4.3.6. For every n ≥ 2, there is a “universal” computable regressive f : [ω]n → ω, i.e. an f such

that given any set Mf minhomogeneous for f and any computable regressive g : [ω]n → ω, there exists a set

Mg minhomogeneous for g such that Mg ≤T Mf .

Using Claim 2.4.4, we get similar results for canonical sets for computable f : [ω]n → ω.

Corollary 4.3.7. For every n ≥ 2, there exists a computable f : [ω]n → ω such that deg(C) � 0(n−1) for

every set C canonical for f .
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The next corollary was discussed in Remark 3.3.6, but we also obtain it immediately from Corollary 4.3.3.

Corollary 4.3.8. For every n ≥ 2, there exists a computable f : [ω]n → ω with no Σ0
n canonical set.

Corollary 4.3.9. For every n ≥ 2, there exists a computable f : [ω]n → ω such that every Π0
n canonical set

C satisfies deg(C) ≥ 0(n).

Also, combining Theorem 3.2.4 and Corollary 4.3.7 for n = 2, we get the following.

Corollary 4.3.10. There is a “universal” computable f : [ω]2 → ω, i.e. an f such that given any set Cf

canonical for f and any computable g : [ω]2 → ω, there exists a set Cg canonical for g such that Cg ≤T Cf .

In contrast, we show in the next chapter that there does not exist a “universal” computable f : [ω]2 → 2

for Ramsey’s Theorem.

4.4 Open Questions

In the previous chapter, we gave upper bounds for canonical sets for computable f : [ω]n → ω, in terms of

both the Turing degrees and the arithmetical hierarchy. In this chapter, we provided lower bounds. These

bounds give sharp characterizations when n = 2, but the above upper bounds increase by two jumps for each

successive value of n while the lower bounds increase by only one for each successive value of n. In light of

Theorem 3.2.6, I conjecture that the upper bounds provided in Theorem 3.2.4 and Theorem 3.3.5 are sharp.

Conjecture 4.4.1. For every n ≥ 3, there exists a computable f : [ω]n → ω such that deg(C)� 0(2n−3) for

every set C canonical for f .

Conjecture 4.4.2. For every n ≥ 3, there exists a computable f : [ω]n → ω with no Σ0
2n−2 canonical set.
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Chapter 5

Ramsey Degrees

5.1 Definitions and Basic Results

Definition 5.1.1. Suppose that n, p ≥ 1, B ⊆ ω is infinite, and f : [B]n+1 → p. We say that f is stable if

limb∈B f(x, b) exists for every x ∈ [B]n.

Stable functions, apart from their intrinsic interest, arise when we restrict f to an r-cohesive subset of

B. Therefore, by combining knowledge about r-cohesive sets and homogeneous sets for stable f , we can

approach the general question of the complexity of homogeneous sets for arbitrary f . See Corollary A.1.4

for a formal version of this equivalence in second-order arithmetic.

Definition 5.1.2.

(1) A Turing degree a is Ramsey if every computable f : [ω]2 → 2 has an a-computable homogeneous set.

(2) A Turing degree a is s-Ramsey if every computable stable f : [ω]2 → 2 has an a-computable homoge-

neous set.

We first show that the study of stable computable f : [ω]2 → 2 is equivalent to the study of infinite subsets

of ∆0
2 sets and their complements (or equivalently to the study of arbitrary 0′-computable f : [ω]1 → 2).

Claim 5.1.3 (see [12, Proposition 2.1] and [1, Lemma 3.5]).

(1) If Y ∈ ∆0
2, then there exists a stable computable f : [ω]2 → 2 such that for all sets H homogeneous for

f , either H ⊆ Y or H ⊆ Y .

(2) If f : [ω]2 → 2 is computable and stable, then there exists Y ∈ ∆0
2 such that for all infinite sets A

satisfying either A ⊆ Y or A ⊆ Y , A computes an infinite homogeneous set for f .

Therefore, a Turing degree a is s-Ramsey if and only if for every ∆0
2 set Y , there is an infinite a-computable

subset of either Y or Y .
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Proof. (1) Fix Y ∈ ∆0
2. By the Limit Lemma, there exists a computable f : [ω]2 → 2 such that Y (a) =

limb f(a, b) for all a ∈ ω. Since limb f(a, b) exists for all a ∈ ω, f is stable. Suppose that H is an infinite

homogeneous set for f . If f(a, b) = 0 for all a, b ∈ H with a < b, then for all a ∈ H, we must have

limb f(a, b) = 0, hence H ⊆ Y . Similarly, if f(a, b) = 1 for all a, b ∈ H with a < b, then for all a ∈ A, we

have limb f(a, b) = 1, hence H ⊆ Y .

(2) Let f : [ω]2 → 2 be computable and stable. Since f is stable, the limit limb f(a, b) exists for every

a ∈ ω, and the set Y defined by Y (a) = limb f(a, b) is ∆0
2 by the Limit Lemma. Fix an infinite set A such

that either A ⊆ Y or A ⊆ Y . If A ⊆ Y , define ck recursively by letting ck be the least a ∈ A such that ci < a

and f(ci, a) = 1 for all i < k. Then {ck : k ∈ ω} is an A-computable homogeneous set for f . Similarly, if

A ⊆ Y , define ck recursively by letting ck be the least a ∈ A such that ci < a and f(ci, a) = 0 for all i < k.

Then {ck : k ∈ ω} is an A-computable homogeneous set for f .

To construct a Ramsey degree, we must consider every computable f : [ω]2 → 2. We first show that it

suffices to handle the simpler class of primitive recursive f : [ω]2 → 2.

Proposition 5.1.4. If f : [ω]2 → 2 is computable, then there exists a primitive recursive g : [ω]2 → 2 such

that every set homogeneous for g computes a set homogeneous for f .

Proof. Fix e such that f = ϕe. Define p : ω → ω by letting p(s) be the greatest m ≤ s such that (∀a ≤

m)(∀b ≤ m)[a < b → ϕe,s(a, b) ↓] (if no such m exists, set p(s) = 0). Notice that p is primitive recursive,

increasing, and satisfies lims p(s) =∞. Now define a primitive recursive g : [ω]2 → 2 by

g(a, b) =


ϕe,b(p(a), p(b)) if p(a) < p(b)

0 otherwise

Suppose that H is homogeneous for g. Notice that p(H) is infinite and p(H) ≤T H since p is increasing

and lims p(s) = ∞. Now for all a, b ∈ H with a < b and p(a) < p(b), we have g(a, b) = ϕe(p(a), p(b)) =

f(p(a), p(b)). Therefore, for all c, d ∈ p(H) with c < d, there exist a, b ∈ A with a < b such that f(c, d) =

g(a, b). Since H is homogeneous for g, it follows that p(H) is homogeneous for f .

By iterating Seetapun’s Theorem (Theorem 2.2.17), we can extend it to a result about Ramsey degrees.

Hummel and Jockusch (see [7, Theorem 3.17]) use this technique to prove a version of this result which

avoids one cone. We first prove a lemma in the spirit of the Kleene-Post-Spector Theorem on exact pairs.

Lemma 5.1.5. Let {ci}i∈ω be a sequence of degrees with c0 ≤ c1 ≤ c2 ≤ . . . . Suppose that {bk}k∈ω is a

sequence of degrees such that bk � ci for all k, i ∈ ω. There exists a degree a such that ci ≤ a for all i ∈ ω
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and bk � a for all k ∈ ω.

Proof. Let 〈·〉 : ω2 → ω be a fixed effective bijective coding of pairs of natural numbers. Fix Bk such that

deg(Bk) = bk for each k ∈ ω and fix Ci such that deg(Ci) = ci for each i ∈ ω. We build a set A such that

{a ∈ ω : 〈i, a〉 ∈ A} =∗ Ci for all i ∈ ω meeting the requirements

• R〈e,k〉 : ϕA
e 6= Bk.

for all e, k ∈ ω. We inductively build a sequence {fm}m∈ω of partial functions such that

• f0 ⊆ f1 ⊆ f2 ⊆ . . .

• {〈i, a〉 : i < m} ⊆ dom(fm).

• {〈i, a〉 : i ≥ m} ∩ dom(fm) is finite.

• range(fm) ⊆ 2.

• {a ∈ ω : fm(〈i, a〉) = 1} =∗ Ci for all i < m.

Let f0 = ∅. Suppose that m = 〈e, k〉 and we have defined fm. If there exists σ ∈ ω<ω such that

(∃a)[(∀l < |σ|)(fm(l) ↓→ σ(l) = fm(l)) ∧ (ϕσ
e (a) ↓6= Bk(a))],

let σ be the least such (under some canonical ordering), and let f∗ = fm ∪ σ. Otherwise, let f∗ = fm. Let

fm+1(b) = b for all b ∈ dom(f∗) and let fm+1(〈m,a〉) = Cm(a) for all a with 〈m,a〉 /∈ dom(f∗). Notice that

the above invariants are maintained.

Let A =
⋃

m∈ω fm and let a = deg(A). Since {a ∈ ω : 〈i, a〉 ∈ A} =∗ Ci for every i ∈ ω, it follows that

a ≥ ci for every i ∈ ω. Fix e, k ∈ ω and let m = 〈e, k〉. Suppose that Rm is not satisfied, i.e. ϕA
e = Bk. In

the definition of fm+1, it must have been the case that σ did not exist. We show that Bk is fm-computable.

Given a, search using an fm-oracle until we find the least σ, a, and s (in some canonical ordering) such that

ϕσ
e,s(a) ↓ and σ(l) = fm(l) for all l < |σ| with fm(l) ↓. Notice that we must have ϕσ

e (a) ↓= Bk(a), so this

procedure computes Bk using an fm-oracle, contrary to the fact that fm ≡T ⊕j<mCj and Bk �T ⊕j<mCj .

It follows that Rm is satisfied for every m, hence bk � a for all k ∈ ω.

Proposition 5.1.6. Suppose that f : [ω]2 → 2 is computable and {bk}k∈ω is a collection of nonzero degrees.

There exists a Ramsey degree a such that bk � a for all k ∈ ω.

Proof. Let {fi}i∈ω be a listing of all computable functions f : [ω]2 → 2. We first inductively define an

increasing sequence of degrees {ci}i∈ω such that bk � ci for all k, i ∈ ω. Let c0 = 0. Suppose that ci is
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defined and bk � ci for all k ∈ ω. Since fi is ci-computable and bk � ci for all k ∈ ω, we may use Seetapun’s

Theorem relative to ci to conclude that there is a set H homogeneous for fi with bk � deg(H)⊕ ci for all

k ∈ ω. Fix such an H and let ci+1 = deg(H)⊕ ci.

By Lemma 5.1.5, there exists a degree a such that ci ≤ a for all i ∈ ω and bk � a for all k ∈ ω. For

each i ∈ ω, we have a ≥ ci+1, so there exists and a-computable homogeneous set for fi. Therefore, a is

Ramsey.

Corollary 5.1.7. For any degree b, there exists a Ramsey degree a with b ∩ a = 0. In particular, there is

a minimal pair of Ramsey degrees.

Proof. Let b be a degree. Let {bk}k∈ω be a listing of all nonzero degrees less than or equal to b. By

Proposition 5.1.6, there is a Ramsey degree a such that bk � a for all k ∈ ω. We then have b ∩ a = 0.

5.2 Measure and Category

Sacks (see [24]) proved the following basic results about measure and category of degrees.

Theorem 5.2.1. Suppose that a is a nonzero degree. Then {b : b ≥ a} is meager and has measure 0.

Using Theorem 5.2.1 and the results from Chapters 2-4, it follows that

(1) For each n ≥ 2, the set {a : every computable f : [ω]n → ω has an a-computable canonical set} is

meager and has measure 0.

(2) For each n ≥ 2, the set {a : every computable regressive f : [ω]n → ω has an a-computable minhomo-

geneous set} is meager and has measure 0.

(3) For each n ≥ 3, the set {a : every computable f : [ω]n → 2 has an a-computable homogeneous set} is

meager and has measure 0.

However, in light of Theorem 2.1.9 and Theorem 5.1.6, we cannot hope to use this method to answer similar

questions for {a : a� 0} or the set of Ramsey degrees. Nevertheless, Jockusch and Soare [15, Theorem 5.1

and Corollary 5.4] established that {a : a� 0} is meager and has measure 0, and we proceed to do the same

for the set of Ramsey degrees.

Definition 5.2.2. A set A is called hyperimmune if it is infinite and there is no computable function f such

that

(1) Df(i) ∩Df(j) = ∅ whenever i 6= j.
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(2) Df(i) ∩A 6= ∅ for all i.

where Di is the (i + 1)st finite set in the usual canonical coding of finite sets by natural numbers.

Proposition 5.2.3 (see [29, Theorem V.2.3]). An infinite set A is hyperimmune if and only if there is

no computable function h : ω → ω majorizing pA.

We first prove a general lemma which will provide a unified method for the proofs of Proposition 5.2.5

and Proposition 5.3.2.

Lemma 5.2.4. If h ≤T K, then there exists an infinite and coinfinite D ∈ ∆0
2 such that there are infinitely

many k with pD(k) ≥ h(k) and there are infinitely many k with pD(k) ≥ h(k).

Proof. We build D by finite extensions using a K-oracle, i.e. we produce a sequence of finite binary strings

σ0 ( σ1 ( σ2 ( . . . using K such that D =
⋃

m∈ω σm. We begin by letting σ0 = ε. Suppose that we have

defined σm.

If m is even, let k be the number of ones in σm. Using a K-oracle, calculate h(k). If h(k) ≤ |σm|, let

σm+1 = σm ∗ 1, and notice that for any infinite D ⊃ σm, we have pD(k) = |σm| ≥ h(k). If h(k) > |σm|, let

σm+1 = σm ∗ 0h(k)−|σm| ∗ 1 and notice that for any infinite D ⊃ σm, we have pD(k) = h(k).

If m is odd, let k be the number of zeros in σm. Using a K-oracle, calculate h(k). If h(k) ≤ |σm|, let

σm+1 = σm ∗ 0, and notice that for any coinfinite D ⊃ σm, we have pD(n) = |σm| ≥ h(k). If h(k) > |σm|,

let σm+1 = σm ∗ 1h(k)−|σm| ∗ 0 and notice that for any coinfinite D ⊃ σm, we have pD(k) = h(k).

Since we insert a one in σm+1 when m is even and we insert a zero in σm+1 when m is odd, it follows

that there are at least m ones and at least m zeros in σ2m+2 for every m. Therefore, D and D are infinite.

Clearly by construction there are infinitely many k with pD(k) ≥ h(k) and there are infinitely many k with

pD(k) ≥ h(k).

The next proposition is well-known (for example, let D be a ∆0
2 1-generic set), but provides a simple

application of the above lemma.

Proposition 5.2.5. There exists D ∈ ∆0
2 such that D and D are hyperimmune.

Proof. Fix h ≤T K such that for every total computable function f , the set {k ∈ ω : h(k) ≥ f(k)} is cofinite

(for example, let h(k) = max({0} ∪ {ϕe(k) : e ≤ k and ϕe(k) ↓}). By Lemma 5.2.4, there exists an infinite

and coinfinite ∆0
2 set D such that there are infinitely many k with pD(k) ≥ h(k) and there are infinitely

many k with pD(k) ≥ h(k). Thus, if f is a total computable function, it follows that there are infinitely

many k with pD(k) ≥ f(k) + 1 > f(k) and there are infinitely many k with pD(k) ≥ f(k) + 1 > f(k) (since

k 7→ f(k) + 1 is computable). Therefore, D and D are hyperimmune by Proposition 5.2.3.
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Theorem 5.2.6. If A is hyperimmune, then λ({X ∈ 2ω : X computes an infinite subset of A}) = 0.

Proof. First notice that for each i, the set {X ∈ 2ω : ϕX
i is an infinite subset of A} is Borel, so the set

{X ∈ 2ω : X computes an infinite subset of A} =
⋃∞

i=0{X ∈ 2ω : ϕX
i is an infinite subset of A} is also Borel.

It follows that all of these sets are measurable.

We prove the contrapositive. Let A be a set such that λ({X ∈ 2ω : X computes an infinite subset of

A}) > 0. We will show that A is not hyperimmune by constructing a computable f satisfying (1) and (2)

of Definition 5.2.2. By countable subadditivity of the measure λ, we have that λ({X ∈ 2ω : X computes

an infinite subset of A}) ≤
∑∞

i=0 λ({X ∈ 2ω : ϕX
i is an infinite subset of A}). Our assumption that

λ({X ∈ 2ω : X computes an infinite subset of A}) > 0 together with the above inequality implies that

λ({X ∈ 2ω : ϕX
e is an infinite subset of A}) > 0 for some fixed e. Let M = {X ∈ 2ω : ϕX

e is an infinite

subset of A} and set δ = λM > 0. Since M is a measurable set, we may choose σ1, σ2, . . . , σm ∈ 2<ω with

λ(M4
⋃m

i=1 I(σi)) < δ
3 . Fix a γ ∈ Q with δ

3 < γ < 2δ
3 .

We define a computable function f recursively so that {Df(k)}k∈ω witnesses that A is not hyperimmune.

Suppose that k ≥ 0 and we have already defined f(i) for all i < k. Let a0 = max({0} ∪
⋃k−1

i=0 Df(i)).

Let Z = {τ ∈ 2<ω : (∃i)(∃a)(∃s)[1 ≤ i ≤ m, τ ⊇ σi, a > a0, and ϕτ
e,s(a) ↓= 1)}. Search until we find

τ1, τ2, . . . , τl ∈ Z with λ(
⋃l

j=1 I(τj)) > γ. We may carry out this search effectively since we can effectively

find an index for Z as a c.e. set and we can effectively find the measure of a finite union of basic open sets.

We now argue that this search must terminate. We first show that M∩
⋃m

i=1 I(σi) ⊆
⋃

τ∈Z I(τ). Let

X ∈ M ∩
⋃m

i=1 I(σi). Then ϕX
e is an infinite subset of A and there exists an i with 1 ≤ i ≤ m such that

σi ⊂ X. Thus, there exists an a > a0 with ϕX
e (a) ↓= 1, and since σi ⊂ X, we may choose an s ∈ ω and

a τ ∈ ω<ω such that σi ⊆ τ ⊂ X and ϕτ
e,s(a) ↓= 1. It follows that τ ∈ Z, and since τ ⊂ X, we see that

X ∈
⋃

τ∈Z I(τ).

We have λ(M∩
⋃m

i=1 I(σi)) + λ(M\
⋃m

i=1 I(σi)) = λM = δ, so

λ(M∩
m⋃

i=1

I(σi)) = δ − λ(M\
m⋃

i=1

I(σi))

≥ δ − λ(M4
m⋃

i=1

I(σi))

> δ − δ

3

=
2δ

3

> γ.

Therefore, λ(
⋃

τ∈Z I(τ)) > γ from above, so there exists τ1, τ2, . . . , τl ∈ Z with λ(
⋃l

j=1 I(τj)) > γ. It follows
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that the search must terminate.

For each j with 1 ≤ j ≤ l, effectively find an aj > a0 with ϕ
τj
e (aj) ↓= 1. Set Df(k) = {a1, a2, . . . , al}.

This ends the definition of f(k), but we use the established notation to show that Df(k) ∩Df(i) = ∅ for all

i < k and that Df(k) ∩A 6= ∅.

We have Df(k) ∩ Df(i) = ∅ for all i < k since max({0} ∪
⋃k−1

i=0 Df(i)) = a0 < Df(k). To establish

that Df(k) ∩ A 6= ∅, we first show that M∩
⋃l

j=1 I(τj) 6= ∅. Suppose that M∩
⋃l

j=1 I(τj) = ∅. Then⋃l
j=1 I(τj) ⊆ (

⋃m
i=1 I(σi))\M and so

λ(M4
m⋃

i=1

I(σi)) ≥ λ((
m⋃

i=1

I(σi))\M)

≥ λ(
l⋃

j=1

I(τj))

> γ

>
δ

3

a contradiction.

Fix X ∈M∩
⋃l

j=1 I(τj). Choose j with 1 ≤ j ≤ l such that τj ⊂ X. Since ϕ
τj
e (aj) ↓= 1, it follows that

ϕX
e (aj) ↓= 1, hence aj ∈ A because X ∈M. Therefore, aj ∈ Df(k) ∩A, and the proof is complete.

Remark 5.2.7. The converse of Theorem 5.2.6 is not true. Let A be a noncomputable introreducible set

which is not hyperimmune (such a set exists because every nonzero degree is introreducible but there exist

nonzero hyperimmune-free degrees). A is not hyperimmune but λ({X ∈ 2ω : X computes an infinite subset

of A}) = λ({b : b ≥ deg(A)}) = 0. Also, by [15, Theorem 5.5], there exists an immune set A such that

λ({X ∈ 2ω : X computes an infinite subset of A}) = 1. It follows that the collection of sets A such that

λ({X ∈ 2ω : X computes an infinite subset of A}) = 0 strictly contains the collection of hyperimmune sets

and is strictly contained in the collection of immune sets.

Corollary 5.2.8. There exists a computable stable f : [ω]2 → 2 such that λ({X ∈ 2ω : X computes a

homogeneous set for f}) = 0. In particular, λ({a : a is s-Ramsey}) = 0.

Proof. By Proposition 5.2.5, there exists D ∈ ∆0
2 such that D and D are hyperimmune. By Claim 5.1.3,

there exists a stable computable f : [ω]2 → 2 such that for all sets H homogeneous for f , either H ⊆ D or

H ⊆ D. Using Theorem 5.2.6, it follows that λ({X ∈ 2ω : X computes a homogeneous set for f}) = 0.

Theorem 5.2.9. Let A be infinite. A is immune if and only if {X ∈ 2ω : X computes an infinite subset of

A} is meager.
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Proof. (←) If A is not immune, then A contains an infinite c.e. subset, and hence an infinite computable

subset. Therefore, every set computes an infinite subset of A, so {X ∈ 2ω : X computes an infinite subset of

A} = 2ω is not meager.

(→) Suppose that {X ∈ 2ω : X computes an infinite subset of A} is not meager. There exists some e

such that the closure of {X ∈ 2ω : ϕX
e is an infinite subset of A} contains a nonempty open set (otherwise,

each such set is nowhere dense, so {X ∈ 2ω : X computes an infinite subset of A} would be meager since it

is the countable union of these sets). Fix such an e and let M = {X ∈ 2ω : ϕX
e is an infinite subset of A}.

Since cl(M) (the closure of M) contains an open set, we may choose σ ∈ 2<ω with I(σ) ⊆ cl(M). Notice

that given any nonempty open set O ⊆ cl(M), we must have O ∩M 6= ∅.

Let C = {k ∈ ω : (∃τ)(∃s)[τ ⊇ σ ∧ ϕτ
e,s(k) ↓= 1]}. Note that C is infinite and c.e. (C is infinite because

there exists X ∈ I(σ) ∩M by the above comments). Let k ∈ C. Choose τ ⊇ σ with ϕτ
e (k) ↓= 1. If k /∈ A,

then I(τ) would be a nonempty open subset of I(σ) ⊆ cl(M) such that I(τ)∩M = ∅, contrary to the above

remarks. Therefore k ∈ A. It follows that that C ⊆ A, and hence A is not immune.

Corollary 5.2.10. There exists a computable stable f : [ω]2 → 2 such that {X ∈ 2ω : X computes a

homogeneous set for f} is meager. In particular, {a : a is s-Ramsey} is meager.

Proof. Proof. By Proposition 5.2.5, there exists D ∈ ∆0
2 such that D and D are hyperimmune. By Claim

5.1.3, there exists a stable computable f : [ω]2 → 2 such that for all sets H homogeneous for f , either H ⊆ D

or H ⊆ D. Using Theorem 5.2.9, it follows that {X ∈ 2ω : X computes a homogeneous set for f} is

meager.

5.3 s-Ramsey Degrees

Definition 5.3.1 (Downey, Jockusch, Stob [3]). A degree a is array noncomputable (abbreviated ANC)

if for each h ≤wtt K, there is an a-computable function g such that g(k) ≥ h(k) for infinitely many k.

Proposition 5.3.2. There exists B ∈ ∆0
2 such that deg(A) is ANC for every infinite set A with either

A ⊆ B or A ⊆ B.

Proof. Fix a computable enumeration {Ks}s∈ω of K. Define a function h : ω → ω by letting h(k) be the

least s such that K � k = Ks � k, and notice that h ≤T K. By Lemma 5.2.4, there exists D ∈ ∆0
2 such that

there are infinitely many k with pD(k) ≥ h(k) and there are infinitely many k with pD(k) ≥ h(k). Suppose
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that A is an infinite set such that either A ⊆ D or A ⊆ D. Since pA ≤T A and either pA(k) ≥ pD(k) for all

k or pA(k) ≥ pD(k) for all k, it follows from [3, Theorem 1.3] that deg(A) is ANC.

Corollary 5.3.3 (see [3, Theorem 2.1]). If a is s-Ramsey, then a bounds a 1-generic degree. In particular,

a is not minimal.

Remark 5.3.4. At the end of [3], Downey, Jockusch, and Stob remark that the ANC degrees have measure

0 (using a result of Kurtz). Hence, we get another proof that the s-Ramsey degrees have measure 0.

The following result gives more information about the complexity of s-Ramsey degrees.

Theorem 5.3.5 (Downey, Hirschfeldt, Lempp, Solomon [2]). There exists D ∈ ∆0
2 such that every

infinite set A with either A ⊆ D or A ⊆ D is not low.

Corollary 5.3.6. There does not exist a low s-Ramsey degree.

We extend Corollary 5.3.6 in two directions, first by showing that the only ∆0
2 s-Ramsey degree is 0′,

and then that there is no low2 s-Ramsey degree.

Theorem 5.3.7. The only ∆0
2 s-Ramsey degree is 0′.

Proof. Suppose that D is a ∆0
2 set such that K �T D. We will construct a ∆0

2 set B such that D does not

compute any infinite subset of B or B. We have the following requirements:

• R2e: If ϕD
e is {0, 1}-valued, total, and infinite, then there is an a with ϕD

e (a) = 1 and B(a) = 0.

• R2e+1: If ϕD
e is {0, 1}-valued, total, and infinite, then there is an a with ϕD

e (a) = 1 and B(a) = 1.

For each e, define a partial function ue by letting ue(a) be the use of ϕD
e on input a if ϕD

e (a) ↓ and letting

ue(a) ↑ otherwise. Also, define a computable partial function θ by letting θ(a) = (µt)[a ∈ Kt] if a ∈ K and

θ(a) ↑ otherwise.

The idea of the proof is as follows. Suppose that i = 2e + d with 0 ≤ d ≤ 1. If ϕD
e is {0, 1}-valued, total,

and infinite, we need to exhibit an a with ϕD
e (a) = 1 and B(a) = d. We work on requirement Ri by finding

an a such that our approximation to the computation ϕD
e (a) at stage s produces a 1, claiming the least

such available a, and ensuring that Bs(a) = d. Since we need to ensure that the computable approximation

{Bs}s∈ω settles down on each a, we must temper this strategy in order to prevent two conflicting requirements

from claiming the same a at infinitely many stages. Therefore, we impose the additional requirement that

in order for Ri to claim a at s, we must have a ≥ i and the current approximate use of the computation

ϕD
e (a) is less than the maximum of the approximations to θ(b) for all b ≤ a. Now if ϕD

e (a) ↓6= 1 or ϕD
e (a) ↑,
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then Ri will claim a at only finitely many stages s (in the latter case this follows because the value of the

approximation of the use must tend to infinity). If ϕD
e (a) = 1, then the set of stages at which Ri claims a will

either be finite or cofinite, depending on the size of the use of the computation. Thus, each requirement will

have only a finite set of values of a which it is unable to eventually claim and furthermore the approximation

{Bs}s∈ω will eventually settle down on each a. Now suppose that ϕD
e is {0, 1}-valued, total, and infinite.

We need to argue that requirement Ri succeeds in claiming an a with ϕD
e (a) = 1 on a cofinite set of stages.

The only way this could fail is if for almost all a with ϕD
e (a) = 1, the use of the computation exceeds

max{θ(b) : b ≤ a and θ(b) ↓}. However, we can argue that such a situation would imply the existence of a

D-computable function h such that for all k, we have k ∈ K ↔ k ∈ Kh(k), contrary to the hypothesis that

K �T D.

Fix a computable approximation {Ds}s∈ω of D. Given e and s, let ue,s(a) be the use of ϕDs
e,s on input a

if ϕDs
e,s(a) ↓ and let ue,s(a) ↑ otherwise. Also, given s, let θs(a) = (µt ≤ s)[a ∈ Kt] (if a /∈ Ks, then θs(a) ↑).

We give a computable approximation {Bs}s∈ω of the set B. At stage s, proceed as follows. We run

through substages i in increasing order from i = 0 to i = s working on requirement Ri. At substage

i = 2e + d with 0 ≤ d ≤ 1, let ai,s be the least a ≤ s, if it exists, such that

(1) a ≥ i.

(2) ϕDs
e,s(a) = 1.

(3) ue,s(a) < max{θs(b) : b ≤ a and θs(b) ↓}.

(4) a has not yet been claimed at stage s.

If ai,s exists, set Bs(ai,s) = d, say that requirement Ri claims ai,s at stage s, and move to the next substage.

If ai,s does not exist, simply move to the next substage. At the end of the substages, conclude stage s by

setting Bs(a) = 0 for each a which was not claimed during stage s.

For each i, a ∈ ω, let Zi,a = {s ∈ ω : Ri claims a at stage s}. We prove the following for each i, a ∈ ω

(where i = 2e + d with 0 ≤ d ≤ 1):

(1) If ϕD
e (a) ↓6= 1, then Zi,a is finite.

(2) If ϕD
e (a) ↑, then Zi,a is finite.

(3) If ϕD
e (a) ↓= 1, then Zi,a is either finite or cofinite.

(4) lims Bs(a) exists.
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Fix a. We first prove items (1), (2), and (3) by induction on i. Suppose that i = 2e + d with 0 ≤ d ≤ 1

and that for all j < i, the set Zj,a is either finite or cofinite. First notice that Zi,a = ∅ if a < i, so we may

assume that a ≥ i. If there exists j < i such that Zj,a is cofinite, then Zi,a is finite because at most one

requirement may claim a at a given stage. Suppose that Zj,a is finite for all j < i. Fix t0 such that for all

j < i and all s ≥ t0, Rj does not claim a at stage s. Let m = max({0} ∪ {θ(b) : b ≤ a and θ(b) ↓} and fix

t1 ≥ t0 such that θs(b) ↓= θ(b) for all b ≤ a with θ(b) ↓.

Suppose first that ϕD
e (a) ↓6= 1. Fix t2 ≥ t1 such that ϕDs

e,s(a) ↓6= 1 for all s ≥ t2. Then for all s ≥ t2,

requirement Ri does not claim a at stage s. Hence, Zi,a is finite.

Suppose that ϕD
e (a) ↑. Fix t2 ≥ t1 such that D(b) = Ds(b) for all b ≤ m and all s ≥ t2. Then for

all s ≥ t2, if ϕDs
e,s(a) = 1, we must have ue,s(a) > m = max{θs(b) : b ≤ a and θs(b) ↓} because otherwise

ϕD
e (a) = 1. It follows that for all s ≥ t2, requirement Ri does not claim a at stage s. Hence, Zi,a is finite.

Suppose now that ϕD
e (a) = 1 and ue(a) ≥ m. Fix t2 ≥ t1 such that for all s ≥ t2, we have ϕDs

e,s(a) = 1

and D(b) = Ds(b) for all b ≤ ue(a). Then for all s ≥ t2, requirement Ri does not claim a at stage s because

ue,s(a) ≥ m = max{θs(b) : b ≤ a and θs(b) ↓}. Hence, Zi,a is finite.

Finally, suppose that ϕD
e (a) = 1 and ue(a) < m. Fix t2 ≥ t1 such that for all s ≥ t2, we have ϕDs

e,s(a) = 1

and D(b) = Ds(b) for all b ≤ ue(a). Then for all s ≥ t2, requirement Ri claims a at stage s. Hence, Zi,a is

cofinite.

Therefore, for each i, the set Zi,a = {s ∈ ω : Ri claims a at stage s} is either finite or cofinite. Item (4)

now follows because Zi,a = ∅ if i > a, hence lims Bs(a) = 0 if Zi,a is finite for all i ≤ a and lims Bs(a) = d if

i = 2e + d with 0 ≤ d ≤ 1 is such that Zi,a is cofinite. This ends the proof of (1)-(4).

Define B by letting B(a) = lims Bs(a), and notice that B is ∆0
2 by the Limit Lemma. We end the proof

by showing that each requirement Ri is satisfied. Suppose that i = 2e + d with 0 ≤ d ≤ 1, and that ϕD
e

is {0, 1}-valued, total, and infinite. Let A = {a ∈ ω : a ≥ i and ϕD
e (a) = 1}, and let y = {a ∈ A : Zj,a is

cofinite for some j < i}. Notice that A\y ≤T D since A ≤T D and y is finite (for each j < i, there is at

most one a with Zj,a cofinite). Define h : ω → ω as follows. Given k ∈ ω, let ak be the least element of A\y

greater than or equal to k, and let h(k) = ue(ak). Since ue ≤T D, it follows that h ≤T D.

If for all k ∈ ω we have k ∈ K ↔ k ∈ Kh(k), then K ≤T h ≤T D, contrary to hypothesis. Thus, we may

let l = min{k ∈ ω : k ∈ K\Kh(k)}. We then have

(1) al ≥ l.

(2) al ≥ i.

(3) ϕD
e (al) = 1.
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(4) θ(l) > h(l) = ue(al).

(5) For all j < i, there exists t such that Rj does not claim al at any stage s ≥ t.

Therefore, we may fix t ≥ al such that for all s ≥ t, we have ϕDs
e,s(al) = 1, θs(l) = θ(l), ue,s(al) = ue(al), and

for each j < i, Rj does not claim al at stage s. Thus, for every s ≥ t, requirement Ri claims some b ≤ al

at stage s. Since Zi,b is either finite or cofinite for each b ≤ al, it follows that Zi,b is cofinite for exactly

one b ≤ al. By the above argument, we must have ϕD
e (b) = 1, and by construction, B(b) = d. Therefore,

requirement Ri is satisfied.

Theorem 5.3.7 extends Corollary 5.3.6, but it does not provide a fixed stable computable f : [ω]2 → 2

such that all ∆0
2 homogeneous sets for f have degree 0′. We are thus left with the following question, which

is the corresponding extension of Theorem 5.3.5.

Question 5.3.8. Does there exists a ∆0
2 set D such that every infinite ∆0

2 set A with either A ⊆ D or

A ⊆ D has degree 0′?

5.4 s-Ramsey Degrees and Universality

Recall from Theorem 2.2.11 that given a computable f : [ω]2 → 2 and an a � 0′, there exists a set H

homogeneous for f with deg(H)′ ≤ a. By the Low Basis Theorem relative to 0′ there exists an a� 0′ such

that a′ = 0′′. Using this a in the above yields the following corollary.

Corollary 5.4.1 (Cholak, Jockusch, Slaman [1]). Suppose that f : [ω]2 → 2 is computable. There exists

a set H homogeneous for f with H ′′ ≤T 0′′.

We now proceed to show that there is no fixed degree a with a′′ ≤ 0′′ such that every computable (stable)

f : [ω]2 → 2 has an a-computable homogeneous set, i.e. there is no low2 s-Ramsey degree.

Theorem 5.4.2. Suppose f : ω2 → 2 satisfies f ′′ ≤T 0′′. For each e, let Ze = {a ∈ ω : f(e, a) = 1}. There

exists D ∈ ∆0
2 such that for all e, if Ze is infinite, then Ze * D and Ze * D.

Proof. We give a K-oracle construction of the set D. By the Recursion Theorem relative to K, we may

assume that we have an index d such that D = ϕK
d . We have the following requirements:

• R2e : Ze is finite or (∃a)[f(e, a) = 1 and D(a) = 0].

• R2e+1 : Ze is finite or (∃a)[f(e, a) = 1 and D(a) = 1].

We can rewrite these requirement as:
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• R2e : (∃m)(∀a)[a ≥ m→ f(e, a) = 0] ∨

(∃a)[f(e, a) = 1 ∧ (∃t)(∀s ≥ t)[ϕKs

d,s(a) = 0]].

• R2e+1 : (∃m)(∀a)[a ≥ m→ f(e, a) = 0] ∨

(∃a)[f(e, a) = 1 ∧ (∃t)(∀s ≥ t)[ϕKs

d,s(a) = 1]].

Notice that each of these requirements is Σf
2 , and furthermore we can effectively find an index for each

as such. Therefore, for each i, we can effectively find an mi such that Ri is satisfied if and only if mi ∈ f ′′.

By the Limit Lemma relative to K and the fact that f ′′ ≤T 0′′ ≡T K ′, there exists a function g : ω2 → 2

with g ≤T K such that for all m, we have m ∈ f ′′ ↔ lims g(m, s) = 1 and m /∈ f ′′ ↔ lims g(m, s) = 0.

Furthermore, an index l such that g = ϕK
l may be found effectively. Notice that, for all i, Ri is satisfied if

and only if lims g(mi, s) = 1.

We now give our K-oracle construction of the set D in stages, defining D(s) at stage s. Given s, find the

least i ≤ s, if it exists, such that g(mi, s) = 0, and call it is. If is does not exist, let D(s) = 0. Otherwise, if

is is even, let D(s) = 0, and if is is odd, let D(s) = 1. This ends the construction.

We now verify that Ri is satisfied for all i by induction. Suppose that Rj is satisfied for all j < i, but

Ri is not satisfied. There exists t ≥ i such that g(mj , s) = 1 for all j < i and g(mi, s) = 0 whenever s ≥ t.

Hence, by construction, is = i for all s ≥ t. Therefore, if i is even, say i = 2e, then D(s) = 0 for all s ≥ t,

so Ri is satisfied (if Ze is infinite, then there exists a ≥ t with f(e, a) = 1), a contradiction. Similarly, if i is

odd, say i = 2e + 1, then D(s) = 1 for all s ≥ t, so Ri is satisfied, a contradiction.

The following definition and proposition are essentially due to Jockusch [11].

Definition 5.4.3. Let a be a Turing degree and C a class of functions. We say that the class C is a-

subuniform if there exists an a-computable f : ω2 → ω such that for every g ∈ C, there exists e ∈ ω such

that g(a) = f(e, a) for all a ∈ ω.

Proposition 5.4.4. Suppose that a � 0 and h : ω → ω is computable. Let C = {g : g is a computable

function with g(a) ≤ h(a) for all a ∈ ω}. Then C is a-subuniform. Furthermore, an f witnessing that C is

a-subuniform may be chosen such that f(e, a) ≤ h(a) for all e, a ∈ ω.

Proof. Let T be the set of all σ ∈ ω<ω such that

• σ(〈e, a〉) ≤ h(a) for all e, a with 〈e, a〉 < |σ|.

• σ(〈e, a〉) = ϕe,|σ|(a) for all e, a with 〈e, a〉 < |σ| such that ϕe,|σ|(a) ↓≤ h(a).

• σ(j) = 0 if j < |σ| with j 6= 〈e, a〉 for all e, a.
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Notice that T is a computable infinite tree which is bounded by the computable function m 7→ h((m)1).

Since a � 0, T has an a-computable branch f∗. Define a computable f : ω2 → ω by letting f(e, a) =

f∗(〈e, a〉). Suppose that g ∈ C and fix e ∈ ω with g = ϕe. Let a ∈ ω, and suppose g(a) 6= f(e, a) so that

ϕe(a) 6= f∗(〈e, a〉). If we let s ∈ ω be such that 〈e, a〉 < s and ϕe,s(a) ↓, then f∗ � s /∈ T , a contradiction. If

follows that g(a) = f(e, a) for all a ∈ ω.

Corollary 5.4.5. If X ′′ ≤T 0′′, then there exists D ∈ ∆0
2 such that X does not compute any infinite subset

of D or D.

Proof. Relativizing Proposition 5.4.4 and the Low Basis Theorem to X, there exists f : ω2 → 2 low over X

such that for every X-computable set Z, there exists an e ∈ ω with Z = {a ∈ ω : f(e, a) = 1}. We have

f ′′ = (f ′)′ ≡T (X ′)′ = X ′′ ≤T 0′′. Therefore, by Theorem 5.4.2, there exists D ∈ ∆0
2 such that for all infinite

X-computable sets A, A * D and A * D.

Corollary 5.4.6. There is no s-Ramsey degree a satisfying a′′ ≤ 0′′.

Corollary 5.4.7. Suppose that f : [ω]2 → 2 is computable. There exists a set Hf homogeneous for f and a

computable stable g : [ω]2 → 2 such that Hg �T Hf for all sets Hg homogeneous for g.

Proof. Suppose that f : [ω]2 → 2 is computable. By Theorem 2.2.11 and the Low Basis Theorem relative to

0′, there exists Hf homogeneous for f such that H ′′
f ≤T 0′′. By Corollary 5.4.6, deg(Hf ) is not s-Ramsey,

so there exists a computable stable g : [ω]2 → 2 such that Hg �T Hf for all sets Hg homogeneous for g.

Corollary 5.4.8.

(1) There is no “universal” computable f : [ω]2 → 2, i.e. a computable f : [ω]2 → 2 such that for all

computable g : [ω]2 → 2 and all sets Hf homogeneous for f , there is a set Hg homogeneous for g such

that Hg ≤T Hf .

(2) There is no “universal” computable stable f : [ω]2 → 2, i.e. a computable stable f : [ω]2 → 2 such that

for all computable stable g : [ω]2 → 2 and all sets Hf homogeneous for f , there is a set Hg homogeneous

for g such that Hg ≤T Hf .

5.5 Open Questions

A fundamental question about the relation between Ramsey’s Theorem for exponent 2 and König’s Lemma

is the following.
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Question 5.5.1. Does there exist a (stable) computable f : [ω]2 → 2 such that deg(H) � 0 for all sets H

homogeneous for f? Does every (s-)Ramsey degree a satisfy a� 0?

Hummel and Jockusch [7, Theorem 2.10] proved that there exists a computable f : [ω]2 → 2 such that

H is effectively immune relative to 0′ for all sets H homogeneous for f . The following strengthening of this

result remains open.

Question 5.5.2. Does there exist a computable f : [ω]2 → 2 such that deg(H)∪0′ � 0′ for all sets H

homogeneous for f? Does every Ramsey degree a satisfy a ∪ 0′ � 0′?

Roughly, Corollary 5.4.8 says that we can not combine all computable f : [ω]2 → 2 into a single universal

g : [ω]2 → 2. The following question about combining two computable 2-colorings into one remains open.

Question 5.5.3. Do there exist computable f1 : [ω]2 → 2 and f2 : [ω]2 → 2 such there is no computable

g : [ω]2 → 2 with the property that every set Hg homogeneous for g computes both a set Hf1 homogeneous

for f1 and a set Hf2 homogeneous for f2?

Remark 5.5.4. The number of colors in the above g is crucial. If f1 : [ω]2 → 2 and f2 : [ω]2 → 2 are

computable, then g : [ω]2 → 4 defined by g(x) = f1(x) + 2 · f2(x) is computable and has the property that

every set Hg homogeneous for g is both homogeneous for f1 and homogeneous for f2.

The following purely combinatorial proposition is a first step toward resolving Question 5.5.3

Proposition 5.5.5. There exist (computable) f1 : [ω]2 → 2 and f2 : [ω]2 → 2 such there is no g : [ω]2 → 2

with the property that every set Hg homogeneous for g is both homogeneous for f1 and homogeneous for f2.

Proof. Let 〈·, ·〉 : [ω]2 → ω be a fixed effective bijective coding of pairs of natural numbers. Define f1 : [ω]2 → 2

and f2 : [ω]2 → 2 by

f1({〈i, a〉, 〈j, b〉}) =


0 if i = j

1 otherwise

f2({〈i, a〉, 〈j, b〉}) =


0 if i ≡ j (mod 2)

1 otherwise

For each i ∈ ω, let Ai = {〈i, a〉 : a ∈ ω}. Notice that an infinite set H is homogeneous for both f1 and f2 if

and only if one of the following is true.

(1) There exists an i such that H ⊆ Ai.

(2) For all even i, we have |H ∩Ai| ≤ 1, and for all odd i, we have H ∩Ai = ∅.
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(3) For all odd i, we have |H ∩Ai| ≤ 1, and for all even i, we have H ∩Ai = ∅.

Suppose that g : [ω]2 → 2 is such that every set H homogeneous for g is homogeneous for both f1 and f2. For

each i ∈ ω, apply Ramsey’s Theorem to g � [Ai]2 : [Ai]2 → 2 to obtain Bi ⊆ Ai such that Bi is homogeneous

for g. For each i ∈ ω, let qi < 2 be such that g([Bi]2) = {qi}.

Fix i ∈ ω. Suppose that j, b ∈ ω with i 6= j and 〈j, b〉 ∈ Bj . If Z = {a ∈ ω : 〈i, a〉 ∈ Bi and

g({〈i, a〉, 〈j, b〉}) = qi} is infinite, then H = {〈j, b〉} ∪ {〈i, a〉 : a ∈ Z} is a homogeneous set for g which does

not satisfy any of (1)-(3) above (since H ∩ Ai is infinite and |H ∩ Aj | = 1), a contradiction. Therefore, for

all sufficiently large a with 〈i, a〉 ∈ Bi, we have g({〈i, a〉, 〈j, b〉}) = 1− qi.

Suppose now that there exists i ∈ ω such that Z = {j ∈ ω : qj = 1 − qi} is infinite. Fix such an i and

enumerate Z as j2 < j3 < j4 < . . . . Fix b0, b1 with b0 6= b1 such that 〈i, b0〉, 〈i, b1〉 ∈ Bi, and let j0 = j1 = i.

Suppose we have already defined b0, b1, . . . , bm with m ≥ 1 and assume inductively that

• 〈jk, bk〉 ∈ Bjk
for all k ≤ m.

• g({〈jk, bk〉, 〈jl, bl〉}) = qi for all k, l with 0 ≤ k < l ≤ m.

We now define bm+1. By the previous paragraph, for each k ≤ m, all sufficiently large a with 〈jm+1, a〉 ∈

Bjm+1 satisfy g({〈jm+1, a〉, 〈jk, bk〉}) = 1− qjm+1 = qi. Therefore, we may let bm+1 be the least a such that

〈jm+1, a〉 ∈ Bjm+1 and g({〈jm+1, a〉, 〈jk, bk〉}) = qi for all k ≤ m. Then the inductive hypothesis holds and

we may continue. However, the set H = {〈jm, bm〉 : m ∈ ω} is a homogeneous set for g which does not

satisfy any of (1)-(3) above (since |H ∩Ai| = 2 and |H ∩Ajm
| = 1 for all m ∈ ω), a contradiction.

Since at least one of the sets {j ∈ ω : qj = 0} and {j ∈ ω : qj = 1} is infinite, it follows from the previous

paragraph that qi = qj for all i, j ∈ ω. Let q = qi for some (all) i ∈ ω. Fix b0 such that 〈0, b0〉 ∈ B0. Suppose

we have already defined b0, b1, . . . , bm with m ≥ 0 and assume inductively that

• 〈k, bk〉 ∈ Bk for all k ≤ m.

• g({〈k, bk〉, 〈l, bl〉}) = 1− q for all k, l with 0 ≤ k < l ≤ m.

We now define bm+1. As above, for each k ≤ m, all sufficiently large a with 〈m + 1, a〉 ∈ Bm+1 satisfy

g({〈m + 1, a〉, 〈k, bk〉}) = 1− q. Therefore, we may let bm+1 be the least a such that 〈m + 1, a〉 ∈ Bm+1 and

g({〈m + 1, a〉, 〈k, bk〉}) = 1 − q for all k ≤ m. Then the inductive hypothesis holds and we may continue.

However, the set H = {〈m, bm〉 : m ∈ ω} is a homogeneous set for g which does not satisfy any of (1)-(3)

above (since |H ∩Aj | = 1 for all j ∈ ω), a contradiction.
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Chapter 6

Generalized Cohesive Sets

6.1 Notions of Cohesiveness

Recall the definition of r-cohesive sets in Chapter 2 and the equivalent characterization given by Claim 2.2.9.

Claim 6.1.1. A set V is r-cohesive if and only if it is infinite, and for every computable f : [ω]1 → 2, there

exists a finite z ⊆ ω such that V \z is homogeneous for f .

With this characterization in mind, it is possible to extend the definition of cohesiveness to higher

exponents.

Definition 6.1.2 (Hummel and Jockusch [7, Definition 1.3]). Fix n ≥ 1. A set V is n-r-cohesive if V

is infinite, and for every computable f : [ω]n → 2, there exists a finite set z such that V \z is homogeneous

for f .

Similarly, we can define notions of cohesiveness for the Canonical Ramsey Theorem and the Regressive

Function Theorem.

Definition 6.1.3. Fix n ≥ 1.

• A set V is n-c-cohesive if V is infinite, and for every computable f : [ω]n → ω, there exists a finite set

z such that V \z is canonical for f .

• A set V is strongly n-c-cohesive if V is infinite, and for every p ≥ 1 and every computable f : [ω]n →

ω × p, there exists a finite set z such that V \z is canonical for f .

• A set V is n-g-cohesive if V is infinite, and for every computable regressive f : [ω]n → ω, there exists

a finite set z such that V \z is minhomogeneous for f .

Remark 6.1.4. By Claim 2.3.3 and Claim 2.4.4, every n-c-cohesive set is both n-r-cohesive and n-g-cohesive.
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To inductively construct n-c-cohesive sets, it seems that we need to construct strongly n-c-cohesive sets.

Fortunately, we have the following simple result.

Claim 6.1.5. For any n ≥ 1, a set V is n-c-cohesive if and only if it is strongly n-c-cohesive.

Proof. Clearly, if V is strongly n-c-cohesive then V is n-c-cohesive. Suppose that V is n-c-cohesive, and let

f : [ω]n → ω × p be computable. Since π1 ◦ f : [ω]n → ω and π2 ◦ f : [ω]n → p are computable, there exists a

finite set z1 such that V \z1 is canonical for π1 ◦ f and there exists a finite set z2 such that V \z2 is canonical

for π2 ◦ f . By Claim 2.3.3, V \z2 is homogeneous for π2 ◦ f . Therefore, V \(z1 ∪ z2) is canonical for f .

6.2 1-c-cohesive Sets

Madan and Robinson [19] studied 1-c-cohesive sets, which they called 1-1 sets (notice that an infinite set A

is 1-c-cohesive if and if only if every computable f : ω → ω is either eventually constant on A or eventually

1-1 on A). Their paper (see [19, Theorem 1.2]) contains the following fact.

Theorem 6.2.1. Every 1-c-cohesive set is dense immune, and hence of high degree.

The following result also appears in [19, Theorem 3.1], and is originally due to Owings [20].

Theorem 6.2.2. If P is co-maximal, then P is 1-c-cohesive.

Since maximal sets appear in every high c.e. degree, it follows that every high c.e. degree contains a

1-c-cohesive set. We now generalize this result.

Theorem 6.2.3. If a is high (i.e. a′ ≥ 0′′) and B is infinite and computable, then a contains a 1-c-cohesive

subset of B.

Proof. Suppose that a′ ≥ 0′′. We first show that there is an a-computable 1-c-cohesive subset of B. Fix e0

such that B = ϕe0 . Using a 0′′-oracle, we inductively define a function g : ω → ω as follows. Let g(0) = e0.

Suppose that we have defined g(k) for some k ≥ 0 and that ϕg(k) is total, {0, 1}-valued, and infinite. If ϕk is

not total (a question we can answer using a 0′′-oracle), let g(k+1) = g(k). Suppose that ϕk is total. Using a

0′′-oracle again, determine whether ϕk is unbounded on ϕg(k), i.e. whether (∀m)(∃b)[ϕg(k)(b) = 1 ∧ ϕk(b) ≥

m].

If ϕk is unbounded on ϕg(k), use a 0′′-oracle to let g(k + 1) be the least e ∈ ω such that:

• ϕe is total, {0, 1}-valued, and infinite.

• ϕg(k)(b) = 1 for all b with ϕe(b) = 1.
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• ϕk(a) 6= ϕk(b) for all a, b ∈ ω with a 6= b and ϕe(a) = 1 = ϕe(b).

To see that such an e exists, inductively define a strictly increasing computable function p as follows. Let

p(0) be the least b such that ϕg(k)(b) = 1. Suppose that we have defined p(i) for all i ≤ l. There exists b

with ϕg(k)(b) = 1 such that b > p(i) and ϕk(b) 6= ϕk(p(i)) for all i ≤ l since ϕk is unbounded on ϕg(k). Let

p(l + 1) be the least such b, which can be found effectively. Since p is computable and strictly increasing,

there is an e such that ϕe = range(p), and this e satisfies the above.

If ϕk is bounded on ϕg(k), proceed as follows. There exists c such that the set Zc = {b ∈ ω : ϕg(k)(b) = 1

and ϕk(b) = c} is infinite. Fix the least such c using a 0′′-oracle. Since Zc is computable, there exists e such

that ϕe = Zc, and we let g(k + 1) be the least such e (which we can again find using a 0′′-oracle).

Notice that

• g is 0′′-computable.

• ϕg(k) is total, {0, 1}-valued, and infinite for all k ∈ ω.

• B = ϕg(0) ⊇ ϕg(1) ⊇ ϕg(2) ⊇ . . . .

• For all k ∈ ω with ϕk total, ϕg(k) is canonical for ϕk.

Since deg(g) ≤ 0′′ and a′ ≥ 0′′, there exists an a-computable g1 : ω2 → ω such that g(k) = lims g1(k, s) for

all k ∈ ω. We now define an 1-c-cohesive set V with V ⊆ B by inductively defining its principal function pV

using an a-oracle. Let pV (0) = min(B). Suppose that pV (m) is defined. Let sm+1 be the least s such that

(∃b)[pV (m) < b ≤ s ∧ b ∈ B ∧ (∀k ≤ m)[ϕg1(k,s),s(b) ↓= 1]]

Notice that such an s exists because for all sufficiently large t, we have g1(k, t) = g(k) for all k ≤ m. Let

pV (m + 1) be the least b satisfying the above with s = sm+1.

We now show that V is a 1-c-cohesive subset of B. Clearly, V ⊆ B by construction. Suppose that ϕk

is total. Fix t such that g1(i, s) = g(i) for all i ≤ k and all s ≥ t. By construction, for all m ≥ max{k, t},

we have ϕg(k)(pV (m)) = 1. Therefore, letting z = {pV (i) : i < max{k, t}}, we see that V \z ⊆ ϕg(k). Since

ϕg(k) is canonical for ϕk, it follows that V \z is canonical for ϕk.

Therefore, there is an a-computable 1-c-cohesive subset of B. Since there is an arithmetical 1-c-cohesive

subset of B (from the above), and any infinite subset of a 1-c-cohesive subset of B is a 1-c-cohesive subset

of B, it follows from [13, Theorem 1] that the degrees of 1-c-cohesive sets are closed upwards. Hence, there

is a 1-c-cohesive subset of B of degree a.
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6.3 n-c-cohesive Sets

We can lift results about 1-c-cohesive sets to higher exponents by uniformly building a set A and a family of

functions gk which simultaneously code (modulo finite sets) precanonical pairs for all computable f : [ω]n+1 →

ω, and using a relativized n-c-cohesive set.

Theorem 6.3.1. Suppose that X ⊆ ω, n ≥ 1, B ⊆ ω is infinite and X-computable, and a is a Turing

degree which is high relative to deg(X)(2n−2) (i.e. a ≥ deg(X)(2n−2) and a′ ≥ deg(X)(2n)). There exists an

a-computable set V ⊆ B which is n-c-cohesive relative to X.

Proof. The proof is by induction on n. The case n = 1 follows by relativizing Theorem 6.2.3. Suppose that

the result holds for n. Let X ⊆ ω, B ⊆ ω be infinite and X-computable, and let a be a Turing degree which

is high relative to deg(X)(2n). Since {e ∈ ω : ϕX
e is total} ≤T X ′′, the function f : ω → ω defined recursively

by

f(0) = (µe)[ϕX
e is total]

f(k + 1) = (µe)[e > f(k) and ϕX
e is total]

is X ′′-computable. Using an X ′′-oracle, we uniformly build a set A ⊆ B with A = {a0 < a1 < a2 < . . . },

and functions gk for each k ∈ ω. For each k ∈ ω, if we let Ak = {ai : i ≥ k}, then gk : [Ak]n → ω × 2, and

(Ak, gk) will be a precanonical pair for ϕX
f(k) (viewing ϕX

f(k) as a function from [ω]n+1 to ω). The proof is

completely analogous to the proof of Proposition 3.2.3 relative to X, except that in the construction of A,

once we define am+1, we proceed in order for each k ≤ m + 1 to thin out the set constructed according to

each of the X-computable functions ϕX
f(k) and define gk on all elements of [{ai : k ≤ i ≤ m+1}]n whose last

element is am+1.

By the inductive hypothesis relative to X ′′ and Claim 6.1.5 relative to X ′′, there is a strongly n-c-

cohesive set V relative to X ′′ such that V ⊆ A and deg(V ) ≤ a (since a is high relative to deg(X)(2n) =

deg(X ′′)(2n−2)). Suppose that h : [ω]n+1 → ω is X-computable, and fix k ∈ ω with h = ϕX
f(k). Then

gk : [Ak]n → ω × 2 is X ′′-computable, so there is a finite set z such that V \z is canonical for gk. By Claim

3.1.5, V \z is canonical for f . Therefore, V is an a-computable (n + 1)-c-cohesive subset of B.

Corollary 6.3.2. Suppose that n ≥ 1, B ⊆ ω is infinite and computable, and a is a Turing degree which is

high relative to 0(2n−2). There exists an n-c-cohesive set of degree a.

Proof. Since there is an arithmetical n-c-cohesive subset of B (from Theorem 6.3.1), and any infinite subset

of a n-c-cohesive subset of B is also an n-c-cohesive subset of B, it follows from [13, Theorem 1] that the
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degrees of n-c-cohesive subsets of B are closed upwards. Therefore, by Theorem 6.3.1, there is an n-c-cohesive

subset of B of degree a.

6.4 n-g-cohesive Sets

Notice that given any regressive f : [ω]1 → ω, every infinite set is trivially minhomogeneous for f . Therefore,

every infinite set is 1-g-cohesive relative to every X ⊆ ω.

Again, we can lift results about 1-g-cohesive sets to higher exponents by uniformly building a set A and

a family of functions gk which simultaneously code (modulo finite sets) preminhomogeneous pairs for all

computable regressive f : [ω]n+1 → ω, and using a relativized n-g-cohesive set.

Theorem 6.4.1. Suppose that X ⊆ ω, n ≥ 1, B ⊆ ω is infinite and X-computable, and a is a Turing degree

such that a� deg(X)(n−1). There exists an a-computable set V ⊆ B which is n-g-cohesive relative to X.

Proof. The proof is by induction on n. The case n = 1 is trivial from the above. Suppose that the result

holds for n. Let X ⊆ ω, B ⊆ ω be infinite and X-computable and let a be a Turing degree such that

a � deg(X)(n). By the relativized Low Basis Theorem, we may fix b � deg(X) with b′ ≤ deg(X)′ and

c� deg(X)′ with c′ ≤ deg(X)′′ . By Proposition 5.4.4 relativized to X, the class of X-computable regressive

functions from [ω]n+1 to ω is b-subuniform, so there exists a b-computable f : ω× [ω]n+1 → ω such that the

function y 7→ f(k, y) is regressive for all k, and for all X-computable regressive g : [ω]n+1 → ω, there exists

k ∈ ω such that g(y) = f(k, y) for all y ∈ [ω]n+1.

For each k ∈ ω, let fk : [ω]n+1 → ω be such that fk(y) = f(k, y) for all y ∈ [ω]n+1. Using the fact that

c � deg(X)′ ≥ b′, we use a c-oracle to uniformly build a set A ⊆ B with A = {a0 < a1 < a2 < . . . }, and

functions gk for each k ∈ ω. For each k ∈ ω, if we let Ak = {ai : i ≥ k}, then gk : [Ak]n → ω, and (Ak, gk)

will be a preminhomogeneous pair for fk. The proof is completely analogous to the proof of Proposition

4.2.3 relative to b, except that in the construction of A, to determine am+1, we consider the values fk(x, b)

for all x ∈ [{ai : k ≤ i ≤ m}]n and define gk on all elements of [{ai : k ≤ i ≤ m + 1}]n whose last element is

am+1, for each k ≤ m.

By the inductive hypothesis relative to c, there is an n-g-cohesive set V relative to c such that V ⊆ A and

deg(V ) ≤ a (since a� deg(X)(n) = deg(X ′)(n−1) ≥ c(n−1)). Suppose that h : [ω]n+1 → ω is X-computable

and regressive, and fix k ∈ ω with h = fk. Then gk : [Ak]n → ω is c-computable, so there is a finite set z

such that V \z is minhomogeneous for gk. By Claim 4.2.2, V \z is minhomogeneous for f . Therefore, V is

an a-computable (n + 1)-g-cohesive subset of B.
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Corollary 6.4.2. Suppose that n ≥ 1, B ⊆ ω is infinite and computable, and a is a Turing degree such that

a� 0(n−1). There exists an n-g-cohesive set of degree a.

Proof. Since there is an arithmetical n-g-cohesive subset of B (from Theorem 6.4.1), and any infinite subset

of an n-g-cohesive subset of B is also an n-g-cohesive subset of B, it follows from [13, Theorem 1] that the

degrees of n-g-cohesive subsets of B are closed upwards. Therefore, by Theorem 6.4.1, there is an n-g-cohesive

subset of B of degree a.

Remark 6.4.3. By Theorem 4.3.2, given n ≥ 2, every n-g-cohesive set V satisfies deg(V ) � 0(n−1).

Therefore, for n ≥ 2, Theorem 6.4.1 gives a sharp characterization of the degrees of n-g-cohesive sets.
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Chapter 7

Reverse Mathematics

7.1 The Reverse Mathematics of Partition Theorems

In this section, we obtain some basic reverse mathematics corollaries from the computability-theoretic anal-

ysis we’ve carried out thus far.

Definition 7.1.1. The following definitions are made in second-order arithmetic.

(1) RTn
p is the statement that every f : [N]n → p has a homogeneous set.

(2) RTn is the statement that for all p ≥ 1, every f : [N]n → p has a homogeneous set.

(3) RT is the statement that for all n, p ≥ 1, every f : [N]n → p has a homogeneous set.

(4) CRTn is the statement that every f : [N]n → N has a canonical set.

(5) CRT is the statement that for all n ≥ 1, every f : [N]n → N has a canonical set.

(6) REGn is the statement that every regressive f : [N]n → N has a minhomogeneous set.

(7) REG is the statement that for all n ≥ 1, every regressive f : [N]n → N has a minhomogeneous set.

(8) ACA′0 is the statement that for all sets Z and all n, the nth jump of Z exists.

(9) BΓ (where Γ is a set of formulas) is the statement of Γ-bounding, i.e. for any formula θ(a, b) ∈ Γ we

have

(∀c)[(∀a < c)(∃b)θ(a, b)→ (∃m)(∀a < c)(∃b < m)θ(a, b)]

Proposition 7.1.2. The following are equivalent over RCA0

(1) ACA0
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(2) CRTn for any fixed n ≥ 2.

(3) REGn for any fixed n ≥ 2.

(4) RTn for any fixed n ≥ 3.

(5) RTn
p for any fixed n ≥ 3 and p ≥ 2.

Proof. To see that (1) implies (2), examine the proof of Theorem 3.1.3 and notice that it can be formalized

(in a completely straightforward manner) in ACA0. Since the proofs of Claim 2.4.4 and Claim 2.3.3 can be

carried out in RCA0, it follows that (2) implies (3) and (4). Formalizing the proof of Theorem 4.3.1 in RCA0

gives (3) implies (1). Clearly, (4) implies (5), and formalizing the proof of Proposition 2.2.18 in RCA0 gives

(5) implies (1).

Remark 7.1.3. At the end of [17], Kanamori and McAloon state that the implication REG2 → ACA0 over

RCA0 is due to Clote. Hirst (see [6, Theorem 6.14]), in his thesis, proved that the stronger statement “Every

h-regressive f : [N]2 → N has a minhomogeneous set” implies ACA0 over RCA0.

Proposition 7.1.4. The following are equivalent over RCA0:

(1) ACA′0

(2) CRT

(3) REG

(4) RT

Proof. To see that (1) implies (2), examine the proof of Theorem 3.1.3 and notice that it can be formalized

for all exponents n (in a completely straightforward manner) in ACA′0. Since the proofs of Claim 2.4.4 and

Claim 2.3.3 can be carried out in RCA0, it follows that (2) implies (3) and (4). Formalizing the proof of

Theorem 4.3.2 in RCA0 gives (3) implies (1), and formalizing the proof of Proposition 2.2.18 in RCA0 gives

(4) implies (1).

Proposition 7.1.5. The following are equivalent over RCA0:

(1) BΠ0
1

(2) BΣ0
2

(3) RT1
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(4) CRT1

Proof. The equivalence of (1) and (2) is standard and can be found in [5, Lemma 2.10]. The equivalence of

(1) and (3) is due to Hirst [6, Theorem 6.4], and can also be found in [1, Theorem 2.10]. Since the proof of

Claim 2.3.3 can be carried out in RCA0, it follows that (4) implies (3).

We now show that (3) implies (4). Let M be a model of RCA0 + RT1 and let N be the set of natural

numbers in M. Suppose that f : N → N and f ∈ M. If there exists p ∈ N such that f(n) ≤ p for all

n ∈ N, then there exists a set H ∈M which is homogeneous for f since RT1
p+1 holds in M, and such an H is

canonical for f . Suppose then that the range of f is unbounded, i.e. for every p ∈ N, there exists an n ∈ N

with f(n) > p. Since M satisfies ∆0
1 comprehension, we may recursively define a function g ∈M as follows.

Let g(0) = 0, and given g(n), let g(n+1) be the least k ∈ N such that k > g(n) and f(k) > f(g(n)). Since g

is strictly increasing, and g ∈M, it follows that range(g) is infinite and range(g) ∈M. Notice that range(g)

is canonical for f .

7.2 Open Questions

Many open questions about the reverse mathematical strength of RT2
2 (and simple corollaries of it) remain.

The following is perhaps the most fundamental.

Question 7.2.1 (Seetapun). Does RT2
2 imply WKL0 over RCA0?

Definition 7.2.2. The following definitions are made in second-order arithmetic.

(1) SRT2
2 is the statement that every stable f : [N]2 → 2 has a homogeneous set.

(2) CAC is the statement that every infinite partially ordered set has either an infinite chain or an infinite

antichain.

Question 7.2.3. Does SRT2
2 imply RT2

2 over RCA0?

Question 7.2.4. Does CAC imply RT2
2 over RCA0?
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Appendix A

A Corrected Proof

A.1 RCA0 ` RT2
2 → COH

Definition A.1.1. In second-order arithmetic, let COH be the statement that for any sequence of sets

(Ri)i∈N, there is an infinite set A such that for all i ∈ N, either A ⊆∗ Ri or A ⊆∗ Ri.

Definition A.1.2. In second-order arithmetic, let SRT2
2 be the statement that every stable f : [N]2 → 2 has

a homogeneous set.

Cholak, Jockusch, and Slaman (see [1, Lemma 7.11]) claimed that RCA0 ` RT2
2 ↔ (SRT2

2+ COH), but

their proof of RCA0 ` RT2
2 → COH is seriously flawed. We now give a correct proof of this fact (Jockusch

and Lempp [14] have independently discovered a similar proof).

Claim A.1.3. RCA0 ` RT2
2 → COH.

Proof. The proof is similar to the proof of [1, Theorem 12.5], but we need a slightly more refined argument

to show that the proof goes through in RCA0 (the proof easily goes through in RCA0 + Σ0
2-IND).

Let M be a model of RCA0 + RT2
2 and let N be the set of natural numbers in M. Let (Ri)i∈N ∈ M be

a sequence of sets. By including additional sets in the sequence (Ri)i∈N, if necessary, we may assume that

for all a, b ∈ N with a < b, there exists i ∈ N such that Ri(a) 6= Ri(b). Define d : [N]2 → N by letting d(a, b)

be the least i ∈ N such that Ri(a) 6= Ri(b). Define f : [N]2 → 2 by letting f(a, b) = Rd(a,b)(a). Notice that

d, f ∈M since M � RCA0.

Since M � RT2
2, there exists A ∈M which is homogeneous for f . Let (an)n∈N enumerate A in increasing

order. Suppose first that f([A]2) = {0}. We prove by induction on i ∈ N that for all finite sets X ⊆ N, if

Ri(an) = 1 and Ri(an+1) = 0 for all n ∈ X, then |X| ≤ 2i − 1. Notice that for any n ∈ N, if R0(an) = 1

and R0(an+1) = 0, then d(an, an+1) = 0 and so f(an, an+1) = 1, contrary to the fact that f([A]2) = {0}.
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Therefore, if X ⊆ N is a finite set such that R0(an) = 1 and R0(an+1) = 0 for all n ∈ X, then |X| = 0 = 20−1,

and the result holds for i = 0.

Suppose that i ∈ N, i > 0, and the result holds for all j < i. Notice that, by the inductive hypothesis, for

all finite sets Y ⊆ N and all j < i, if Rj(an) = 0 and Rj(an+1) = 1 for all n ∈ Y , then |Y | ≤ 2j . Let X ⊆ N

be a finite set such that Ri(an) = 1 and Ri(an+1) = 0 for all n ∈ X. Since f([A]2) = {0}, it must be the case

that d(an, an+1) < i for all n ∈ X, and moreover Rd(an,an+1)(an) = 0 and Rd(an,an+1)(an+1) = 1. For each

j < i, let Yj = {n ∈ X : d(an, an+1) = j}. Then X =
⋃i−1

j=0 Yj , hence |X| ≤
∑i−1

j=0 |Yj | ≤
∑i−1

j=0 2j = 2i − 1.

Thus, the result holds for i.

Since the inductive statement is Π0
1, and RCA0 proves order induction for Π0

1 statements, it follows that

for all i ∈ N and all finite sets X ⊆ N, if Ri(an) = 1 and Ri(an+1) = 0 for all n ∈ X, then |X| ≤ 2i − 1.

Similarly, if f([A]2) = {1}, then by interchanging the roles of 0 and 1 in the above arguments, we see that

for all i ∈ N and all finite sets X ⊆ N, if Ri(an) = 0 and Ri(an+1) = 1 for all n ∈ X, then |X| ≤ 2i − 1.

Therefore, for all i ∈ N, either A ⊆∗ Ri or A ⊆∗ Ri. It follows that M � COH.

Corollary A.1.4. RCA0 ` RT2
2 ↔ (SRT2

2+ COH).

Proof. Clearly, RCA0 ` RT2
2 → SRT2

2 and Claim A.1.3 gives RCA0 ` RT2
2 → COH. To see that RCA0 `

(SRT2
2+ COH)→ RT2

2, let M be a model of RCA0 + SRT2
2+ COH and let N be the set of natural numbers in

M. Let f : [N]2 → 2 with f ∈M. For each i ∈ N, let Ri = {j > i : f(i, j) = 0}, and notice that (Ri)i∈N ∈M.

Since M � COH, there exists an infinite A ∈ M such that for all i ∈ N, either A ⊆∗ Ri or A ⊆∗ Ri. Let

(an)n∈N enumerate A in increasing order. Define g : [N]2 → 2 by letting g(n, m) = f(an, am) and notice that

g ∈M and g is stable. Since M � SRT2
2, there exists H ∈M homogeneous for g. We then have g(H) ∈M

and g(H) is homogeneous for f . It follows that M � RT2
2.
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