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Abstract. In many simple integral domains, such as Z or Z[i], there is a

straightforward procedure to determine if an element is prime by simply re-
ducing to a direct check of finitely many potential divisors. Despite the fact

that such a naive approach does not immediately translate to integral do-

mains like Z[x] or the ring of integers in an algebraic number field, there still
exist computational procedures that work to determine the prime elements in

these cases. In contrast, we will show how to computably extend Z in such a

way that we can control the ordinary integer primes in any Π0
2 way, all while

maintaining unique factorization. As a corollary, we establish the existence

of a computable UFD such that the set of primes is Π0
2-complete in every

computable presentation.

1. Introduction

The power and versatility of modern algebra arise from the abstract and ax-
iomatic approach it takes. However, with the rise of computer algebra systems, it
is important to find algorithms in order to perform computations within these alge-
braic structures. Of course, in these settings, one also cares about the efficiency of
these procedures. For example, although the primes in Z are trivially computable,
there is a great deal of interest in how quickly we can determine whether an ele-
ment is prime. In contrast, it is known that there are computable integral domains
where it is impossible even in principle to determine the primes computationally
(see below). In this paper, we extend these examples to build a computable UFD
where the primes are maximally complicated in a very strong sense. We begin
with the following definition (see [13] for background on the formal definitions of
computable sets and function).

Definition 1.1. A computable ring is a ring whose underlying set is a computable
set A ⊆ N, with the property that + and · are computable functions from A × A
to A.

For example, it is easy to view Z as a computable ring by using the even natural
numbers to code the positive elements in ascending order and the odd natural
numbers to code the negative elements in descending order. Of course, we can
view Z as a computable ring in a different way by switching the roles of the evens
and odds. Thus, a given ring can have multiple distinct computable presentations.
Many other natural rings can also be viewed as computable rings. Since we can code
relatively prime pairs of natural numbers using a single natural number, we can view
Q as a computable ring. Similarly, since we can code finite sequences of integers
as natural numbers, we can view Z[x] as a computable ring as well. Generalizing
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this, given an arbitrary computable ring A, we can realize the polynomial ring A[x]
as a computable ring in a natural way. In contrast, uncountable rings can never
be viewed as computable rings, and there are some countable rings that can not as
well.

For a general overview of results about computable rings and fields, see [14].
Computable fields have received a great deal of attention ([8], [10], [12]), and [11]
provides an excellent overview of work in this area. For computable rings, several
papers ([2], [4], [6], [7]) have studied the complexity of ideals and radicals from the
perspective of computability theory and reverse mathematics.

The following algebraic definitions are standard.

Definition 1.2. Let A be an integral domain, i.e. a commutative ring with 1 6= 0
and with no zero divisors (so ab = 0 implies either a = 0 or b = 0). Recall the
following definitions.

(1) An element u ∈ A is a unit if there exists w ∈ A with uw = 1. We denote
the set of units by U(A). Notice that U(A) is a multiplicative group.

(2) Given a, b ∈ A, we say that a and b are associates if there exists u ∈ U(A)
with au = b. We denote the set of associates of a by AssociatesA(a).

(3) An element p ∈ A is irreducible if it nonzero, not a unit, and has the
property that whenever p = ab, either a is a unit or b is a unit. An
equivalent definition is that p ∈ A is irreducible if it is nonzero, not a unit,
and its divisors are precisely the units and the associates of p.

(4) An element p ∈ A is prime if it nonzero, not a unit, and has the property
that whenever p | ab, either p | a or p | b. We denotes the set of primes of
A by Primes(A).

(5) A is a unique factorization domain, or UFD, if it has the following two
properties:
• For each a ∈ A such that a is nonzero and not a unit, there exist

irreducible elements r1, r2, . . . , rn ∈ A with a = r1r2 · · · rn.
• If r1, r2, . . . , rn, q1, q2, . . . , qm ∈ A are all irreducible and r1r2 · · · rn =
q1q2 · · · qm, then n = m and there exists a permutation σ of {1, 2, . . . , n}
such that ri and qσ(i) are associates for all i.

It is a simple fact that if A is an integral domain, then every prime element of A
is irreducible. The converse fails in general, but is true in every UFD. In fact, we
have the following standard result.

Theorem 1.3. Let A be an integral domain. The following are equivalent:

(1) A is a UFD.
(2) Every element of A that is nonzero and not a unit is a product of irre-

ducibles, and every irreducible element of A is prime.

Of course, for most computable integral domains that arise in practice, the set
of primes form a computable set in any natural computable presentation. For the
ring Z, the set of primes trivially form a computable set. Kronecker showed that
the set of primes in (any reasonable computable presentation of) the UFD Z[x] is
computable. Using Gauss’ Lemma and the fact that every element of Q[x] is an
associate of an element of Z[x], it follows that the set of primes in Q[x] is computable
as well.

Consider a number field K with [K : Q] = n and let OK be the set of algebraic
integers in K. In general, OK is always a Dedekind domain, but it may not be a



THE COMPLEXITY OF PRIMES IN COMPUTABLE UFDS 3

UFD. We may fix an integral basis of K over Q, i.e. fix b1, b2, . . . , bn ∈ OK that
form a basis for K over Q such that

OK = {m1b1 +m2b2 + · · ·+mnbn : mi ∈ Z}.
Now given the finitely many values bi·bj , we can compute the multiplication function
on K and hence on OK as well. Since we can simply hard code in these values, it
follows that any integral basis provides a computable presentation of the field K
(by working with underlying set Qn) and the ring OK (by working with underlying
set Zn). We have the following fact.

Proposition 1.4. Let K be a number field with [K : Q] = n. If we fix an integral
basis of K over Q, and represent elements of OK using elements of Zn, then the
set of primes elements of OK is computable.

Proof. Given α ∈ K, the map ϕα : K → K defined by ϕα(x) = α · x is a Q-linear
map, and moreover we can uniformly compute a matrix Mα with rational entries
representing this map because we need only express α · bi in terms of our basis.
Furthermore, notice that if α ∈ OK , then ϕα maps OK into OK , and hence Mα

has integer entries. From this, we can conclude that the norm map N : OK → Z
defined by N(α) = det(ϕα) = det(Mα) is a computable function. Since an element
α ∈ OK is a unit if and only if N(α) = ±1, it follows that U(OK) is a computable
set.

Moreover, given α, β ∈ K with α 6= 0 represented as elements of Qn, we can
uniformly compute β

α as represented by an element of Qn by simply searching
through the effectively countable set Qn until we find γ ∈ K with γ · α = β.
Now if α, β ∈ OK , we can effectively determine if α | β in OK by checking if

this representation of β
α is in Zn. Therefore, the divisibility relation on OK is

computable.
Since we can compute the norm of an element, and since |OK/〈α〉| = |N(α)|,

we can compute the function f : OK\{0} → N defined by f(α) = |OK/〈α〉|. Now
to determine if α is prime, we compute f(α) and then search until we find f(α)
many distinct representative of the quotient (this is possible because the divisibility
relation is computable). With these representatives, we can form the finite mul-
tiplicative table of the quotient (again using the fact that the divisibility relation
is computable). To determine if α is prime, we then check if the quotient has any
zero divisors, which is now just a finite check. �

Despite all of this, there are computable integral domains such that the set of
primes is not computable. In fact, there is a computable field F such that the
set of primes in F [x] is not computable (see [11, Lemma 3.4] or [14, Section 3.2]
for an example). There exist methods to measure the complexity of sets that are
not computable, and we investigate the placement of such sets in the arithmetical
hierarchy arising from quantifying over computable relations.

Definition 1.5. Let Z ⊆ N.

• We say that Z is a Σ0
1 set if there exists a computable R ⊆ N2 such that

i ∈ Z ⇐⇒ (∃x)R(x, i).

• We say that Z is a Π0
1 set if there exists a computable R ⊆ N2 such that

i ∈ Z ⇐⇒ (∀x)R(x, i).
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• We say that Z is a Π0
2 set if there exists a computable R ⊆ N3 such that

i ∈ Z ⇐⇒ (∀x)(∃y)R(x, y, i).

Since it is possible to computably code finite sequences of natural numbers with
a single natural number, the above definitions do not change if we allow finite
consecutive blocks of the same (existential or universal) quantifiers. Although every
computable set is Σ0

1, there exists a Σ0
1 set that is not computable, such as the set

of natural numbers coding programs that halt. Similarly, the collection of Σ0
1 sets

is a proper subset of the collection of all Π0
2 sets, and the collection of Π0

1 sets
is a proper subset of the collection of all Π0

2 sets. See [13, Chapter 4] for more
information about the arithmetical hierarchy.

Suppose that A is a computable integral domain. We then have that U(A) is a
Σ0

1 set because

u ∈ U(A)⇐⇒ (∃w)[uw = 1],

and the relation uw = 1 is computable. The set of irreducibles of A is a Π0
2 set

because p is irreducible in A if and only if

p 6= 0 ∧ (∀c)[pc 6= 1] ∧ (∀a)(∀b)[p = ab→ a ∈ U(A) ∨ b ∈ U(A)],

and we already know that U(A) is a Σ0
1 set. A similar analysis shows that the set

of primes of A is a Π0
2 set. Our main result is the following, which says that this

result is best possible in a very strong sense.

Theorem 1.6. Let Q be a Π0
2 set, and let p0, p1, p2, . . . list the usual primes from

N in increasing order. There exists a computable UFD A such that:

• Z is a subring of A.
• pi is prime in A if and only if i ∈ Q.

This theorem differs from the result that there is a computable field F such
that the set of prime elements in F [x] is not computable. One reason is that we
are working directly with the usual primes rather than coding into polynomials
(such as x2 − pi), or creating our own primes to do the coding. As a result, our
approach has a more number-theoretic flavor. Furthermore, if F is a computable
field, then U(F [x]) is a computable set in any reasonable computable presentation
of F [x], so the set of irreducibles (and hence primes) of F [x] will always be a Π0

1 set
by our above analysis, and hence could not be Π0

2-complete. Moreover, we obtain
the following strong corollary that may not hold if we code complexity into other
primes.

Corollary 1.7. There exists a computable UFD A such that the set of primes of
A is Π0

2-complete in every computable presentation of A, uniformly in an index for
the presentation.

Proof. Fix a Π0
2-complete set Q (see [13], Theorem IV.3.2), and construct A using

this Q as in Theorem 1.6. Now given any computable presentation of A, we can
find the multiplicative identity element of A by searching until we find a ∈ A such
that a2 = a and a+ a 6= a (notice that the multiplicative identity is the only such
element because A is an integral domain). With this element in hand, we can find
the representation of each pi in A by adding the multiplicative identity to itself the
required number of times. Therefore, the set of primes of A is Π0

2-complete in every
computable presentation of A. �
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Since we are working with the normal integer primes rather than creating some
new ones, we need to be much more careful because of the algebraic dependence rela-
tionships that exist between them. By adjusting the status of one prime, i.e. keeping
it prime or making it not prime, it is certainly conceivable that we could interfere
with others. For example, suppose that A is a integral domain, that q ∈ Primes(A),
and that we want to break the primeness/irreducibility of q, i.e. we want to intro-
duce a nontrivial factorization of q. One idea is to introduce a square root of q,
i.e. to introduce a new element x with x2 = q. The natural way to do this is to
consider A[x]/〈x2 − q〉, but this is problematic for a few reasons. With this ap-
proach, we might destroy the primeness/irreducibility of other elements in A, as
it is well-known that if p, q ∈ N are distinct odd primes, then p is not prime in
Z[
√
q] ∼= Z[x]/〈x2− q〉 if and only if q is a square modulo p. For example, in Z[

√
7],

we have that 3 is not prime because 3 | (1 −
√

7)(1 +
√

7) but 3 - 1 −
√

7 and

3 - 1 +
√

7. Moreover, in Z[
√
q], irreducibles might fail to be prime, and hence we

may have lost the property of being a UFD. Finally, with this approach it is also
impossible to later destroy this factorization as we can not make x a unit without
making q a unit.

Another potential issue arises if we do want to destroy a given factorization
by making an element a unit, but we are not in a UFD and/or are working with
irreducibles. For example, in [3], the following example is given: in Z[

√
−14] one

has
3 · 3 · 3 · 3 = (5 + 2

√
−14)(5− 2

√
−14)

where all of the above factors are irreducible. It follows that

5 + 2
√
−14 | 34

even though 5 + 2
√
−14 and 3 are not associates in Z[

√
−14] (as the units are ±1).

Thus, in this ring, if we later make 3 a unit, then we must make 5 + 2
√
−14 a unit

as well.
With all of these potential issues in mind, we now outline the idea behind the

construction. Start with A0 = Z. We want to turn the normal primes pi on and
off based on a Π0

2 set Q. Fix a computable R ⊆ N3 such that

i ∈ Q⇐⇒ (∀w)(∃z)R(w, z, i)

So intuitively if i acts infinitely often (i.e. if for each w in turn, we find a witnessing
z), then we want pi to be prime in the end. If i acts finitely often, we want pi not
to be prime. To work for i, we assume finite action, and introduce a factorization
pi = xiyi for new elements xi and yi. If i acts at a later stage, we want to destroy
this factorization. To do this, we make yi a unit. We will show that this keeps xi
prime, and since pi will now be an associate of xi, we will reinstate the fact that
pi is prime. We then introduce another factorization pi = x′iy

′
i for new x′i and y′i,

and continue, destroying it if i acts again. We do this forever, building a chain of
integral domains Z = A0 ⊆ A1 ⊆ A2 ⊆ . . . . Let A∞ =

⋃∞
n=0An.

We build this ring in a computable fashion as follows. We think of the natural
numbers as being split into infinitely many infinite columns through a computable
pairing function. We start by putting the integers in the first column and call
that A0. Now each extension will add infinitely many elements to the ring, and to
do this at a given stage we will simply add these elements into the next column
and computably define addition and multiplication at this point both within this
column and between this column and previous ones. Eventually, we will fill up all
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of the columns in turn, and define all of the operations, resulting in a computable
ring.

With this construction, we will need to keep track of several things. For example,
when we make an element a unit, we will localize our ring, and since we have already
constructed part of the ring so far we will need to ensure that we can computably
determine the new elements to add in order to form this localization. As a result
we will need to ensure that we can computably keep track of the multiples of the
xi and yi that we introduce. Algebraically, we need to ensure that the rings along
the way are all Noetherian UFDs and that unrelated primes are unaffected by
these operations. Finally, we need to check that this limiting ring has the required
properties since a union of UFDs need not be a UFD in general.

2. Turning a Prime into a Unit

Let A be an integral domain and let q ∈ A be prime. Suppose that we want
to embed A in another integral domain B such that q is a unit in B. Naturally,
one considers the corresponding localization, i.e. we take the multiplicative set
S = {1, q, q2, . . . } and let B = S−1A. Thinking of A as sitting inside its field of
fractions F by identifying a with a

1 , we have

B =

{
a

qk
: a ∈ A and k ≥ 0

}
= A ∪

{
a

qk
: a ∈ A and k ≥ 1

}
.

Now if A is a computable integral domain and we want to think about extending
to B in a computable fashion, then we need to know which of the elements in the
set on the right are really new, along with when they are distinct from each other

For example, we have that q2

q = q
1 is already an element of A, so we do not want

to introduce it.
Notice that every element of B\A can be written in the form a

qk
where k ≥ 1

and q - a. To see this, suppose that we are given a general a
qm ∈ B with a ∈ A and

m ≥ 1. If q | a, we can factor out a q from a and cancel terms to obtain a different
representation of the same element with a smaller power of q in the denominator.
We can now induct (or take a minimal power in the denominator) to argue that
this element is represented in the above set. Thus, we have

B = A ∪
{
a

qk
: a ∈ A, q - a, and k ≥ 1

}
.

Moreover, it is not difficult to show that the above representations are unique
(i.e. that a

qk
/∈ A when q - a and k ≥ 1, and also that two elements of the right set

are equal exactly when the numerator and power of q are equal. For the latter, if
a
qk

= b
q`

with q - a and q - b, then q`a = qkb. Cancel common q’s. If k = `, then

a = b, and we are done. Otherwise, we have a q left over on side, so either q | a or
q | b, a contradiction).

As a result, if A is computable, and the set {a ∈ A : q | a} is computable, then
from A, q, and an index for this set we can uniformly computably build B as an
extension of A. Since we are going to repeatedly apply this construction along with
a factorization construction, we will need to ensure that the set of multiples of other
primes remain computable as well.
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Proposition 2.1. We have

U(B) = U(A) ∪ {uqk : k ≥ 1 and u ∈ U(A)} ∪
{
u

qk
: k ≥ 1 and u ∈ U(A)

}
.

Proof. Since q · 1
q = 1, we have that q and 1

q are both elements of U(B). We

trivially have that U(A) ⊆ U(B) and also that U(B) is closed under multiplication.
It follows that every element of the sets on the right is an element of U(B).

We now show the reverse containment. Let σ ∈ U(B) be arbitrary. Suppose
first that σ = a ∈ A. We have two cases.

• Suppose that there exists b ∈ A with σb = ab = 1. We then trivially have
that σ = a ∈ U(A).
• Suppose instead that there exists b ∈ A with q - b and ` ≥ 1 such that
σ · b

q`
= a

1 ·
b
q`

= 1. We then have q` = ab. Since q is prime and q - b, it

follows from Lemma 2.2 that q` | a. Fix c ∈ A with a = q`c. We then have
q` = ab = q`cb, so cb = 1 and hence c ∈ U(A). Thus, σ = a = cq` where
c ∈ U(A).

Suppose now that that σ = a
qk

where a ∈ A with q - a and k ≥ 1.

• Suppose that there exists b ∈ A with σb = a
qk
· b1 = 1. We then have qk = ab.

Since q - a and q is prime, we conclude from Lemma 2.2 that qk | b. Fix
c ∈ A with b = cqk. We then have qk = ab = acqk, so ac = 1 and hence
a ∈ U(A). Thus, σ = a

qk
with a ∈ U(A).

• Suppose instead that there exists b ∈ A with q - b and ` ≥ 1 such that
σ · b

q`
= a

qk
· b
q`

= 1. We then have that ab = qk+`. Since k, ` ≥ 1, this

implies that q | ab and hence either q | a or q | b (since q is prime), a
contradiction.

This completes the proof. �

Lemma 2.2. Let A be an integral domain, let p ∈ A be prime, and let k ≥ 1. If
pk | ab and p - a, then pk | b.

Proof. By induction on k. If k = 1, this is immediate from the definition of prime.
Suppose that the result is true for a fixed k ≥ 1. Suppose that pk+1 | ab and p - a.
Since k ≥ 1, we have p | ab, so since p is prime we know that p | b. Write b = pc for
some c ∈ A. We then have pk+1 | apc, so pk | ac. By induction, we conclude that
pk | c. Since b = pc, it follows that pk+1 | b. �

Theorem 2.3. Let A be a computable Noetherian UFD and let q ∈ A be prime.
Suppose that {a ∈ A : q | a in A} is a computable set. Let S = {1, q, q2, . . . } and
let B = S−1A as above.

(1) We can build B as a computable extension of A uniformly from A and an
index for the set {a ∈ A : q | a in A} of multiples of q.

(2) Let p ∈ Primes(A)\AssociatesA(q). The multiples of p in B are precisely
the elements of the following set:

{a ∈ A : p | a in A} ∪
{
a

qk
: a ∈ A, k ≥ 1, q - a in A, and p | a in A

}
In particular, there are no new elements of A that are multiples of p in B.
Furthermore, if we have a computable index for the set {a ∈ A : p | a in
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A}, then we can uniformly computably obtain a computable index for the
set {σ ∈ B : p | σ in B}.

(3) If p1, p2 ∈ Primes(A) are not associates in A, then they are not associates
in B.

(4) Primes(A)\AssociatesA(q) ⊆ Primes(B).
(5) B is a Noetherian UFD.

Proof. (1) Immediate from above.
(2) It is easy to see that the elements in the given sets are indeed multiples of

p in B. Suppose then that σ ∈ B is arbitrary with p | σ in B. Suppose first
that σ = a ∈ A. We need to show that p | a in B. We have two cases.
• Suppose that there exists b ∈ A with pb = σ = a. We then trivially

have that p | a in A.
• Suppose instead there exists b ∈ A with q - b and ` ≥ 1 such that
p · b

q`
= a. We then have pb = aq`. Thus p | aq` in A, and since p is

prime and p - q (as p /∈ AssociatesA(q)), it follows that p | a in A.
Suppose instead that that σ = a

qk
where a ∈ A with q - a and k ≥ 1. We

need to show that p | a in A.
• Suppose that there exists b ∈ A with pb = σ = a

qk
. We then have

pbqk = a, so p | a in A.
• Suppose instead that there exists b ∈ A with q - b and ` ≥ 1 such that
p · b

q`
= σ = a

qk
. We then have pbqk = aq`. Thus p | aq` in A, and

since p is prime and p - q (as p /∈ AssociatesA(q)), it follows that p | a
in A.

This completes the proof.
(3) We prove the contrapositive. Suppose that p1 and p2 are associates in B.

Fix σ ∈ U(B) such that p1 = σp2. We know the units of B from Proposition
2.1, so we handle the cases.
• If σ ∈ U(A), then clearly p1 and p2 are associates in A.
• Suppose that σ = uqk with u ∈ U(A). We then have p1 = uqkp2, so
p2 | p1 in A. Since p1 is prime in A, it is irreducible in A, so as p2 is
not a unit we can conclude that p1 and p2 are associates in A.

• Suppose that σ = u
qk

where k ≥ 1 and u ∈ U(A). We then have

p1 = u
qk
· p2, so p1u

−1qk = p2. This implies that p1 | p2 in A. As in

the previous case, this implies that p1 and p2 are associates in A.
(4) Let p ∈ Primes(A)\AssociatesA(q). First notice that p /∈ U(B) from

Proposition 2.1 because p /∈ U(A) and p is not an associate of any qk

(because if p | qk, then p | q as p is prime, and hence p is an associate of q).
Suppose that

p

1
| a
qk
· b
q`

where we allow the possibility that k = 0 and/or ` = 0. Fix c ∈ A and
m ≥ 0 with

p

1
· c
qm

=
a

qk
· b
q`

We then have pcqk+` = qmab, so p | qmab in A. Now p is prime and p - q (as
p /∈ AssociatesA(q)), so either p | a in A or p | b in A. If p | a in A, then it
is easy to see that p

1 |
a
qk

in B. Similarly if p | b. Therefore, p ∈ Prime(B).
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(5) This is immediate from the fact that the localization of a Noetherian ring
is a Noetherian ring, and the localization of a UFD is a UFD.

�

Notice that using this machinery we can prove the result (essentially appearing
[1] and [14, Example 4.3.9]) that there exists a computable PID A such that U(A) is
Σ0

1-complete in all computable presentations. Fix a Σ0
1-complete set Q. Start with

A0 = Z and let p0, p1, p2, . . . be a listing of the usual primes. As we go along, if we
have An and we ever see that e ∈ Q, then we perform our unit construction to build
An+1 extending An so that pe ∈ U(An+1) while maintaining primeness of the pi
not equal to pe or to any elements we already made units. Let A = A∞ =

⋃∞
n=0An

and notice that i ∈ Q if and only if pi ∈ U(A∞). Since the final ring A∞ is a
localization of the PID A0 = Z, it follows that A∞ is a PID.

3. Introducing a Factorization

In this section, we suppose that we have a computable Noetherian UFD A and an
element q ∈ Primes(A). We introduce a new factorization of q by going to the ring
B = A[x, y]/〈xy−q〉. The hope is that we only destroy the primeness/irreducibility
of q (and its associates), and we leave enough flexibility so that we can later make
y a unit without making x a unit (so that then q and x will be associates).

Proposition 3.1. B is an integral domain.

Proof. We claim that xy − q is irreducible in A[x, y]. Use the lexicographic mono-
mial ordering in A[x, y] with x > y. Recall that, under this ordering, the multi-
degree of

∑n
k=1 ckx

ikyjk ∈ A[x, y] is the lexicographically largest of the pairs
(i1, j1), . . . , (in, jn). Notice that the multi-degree of xy − q is (1, 1), so if it fac-
tors, the leading terms must have multi-degree (1, 1) and (0, 0) or (1, 0) and (0, 1)
(since multi-degrees add upon multiplication). The former implies that one of the
factors is constant, and hencemust be a unit since the leading coefficient of xy − q
is 1. Consider the latter. We have

xy − q = (ax+ by + c)(dy + e)

where a 6= 0 and d 6= 0. Comparing coefficients of x on each side, we conclude
that ae = 0, so e = 0 (because A is an integral domain). Comparing constants, we
conclude that q = −ce, so q = 0, a contraction.

Since xy−q is irreducible in A[x, y] and A[x, y] is a UFD (because A is a UFD), we
conclude that xy−q is prime in A[x, y]. Therefore, the quotient B = A[x, y]/〈xy−q〉
is an integral domain. �

Proposition 3.2. Every element of B can be represented uniquely in the form

amx
m + · · ·+ a1x+ c+ b1y + · · ·+ bny

n

where each ai ∈ A, bi ∈ A, and c ∈ A.

Proof. Given an arbitrary polynomial h(x, y) ∈ A[x, y], we can divide by xy − q
(using the fact that the leading term is a unit) to obtain a remainder where no
monomial is divisible by xy. In other words, in the quotient, reduce any monomial
with xy in it to q, and repeat until there are no xy’s. This proves existence. For
uniqueness, the difference of any polynomials of this form is another polynomial of
this form, and hence has no monomial containing both an x and a y. Any nonzero
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multiple of xy − q must have a monomial divisible by xy by looking a leading
term under some monomial ordering (and again using the fact that A is an integral
domain). �

Notice that in B we have xy = q. Thinking of y = q
x , we can alternatively think

about B in the following way.

Proposition 3.3. Consider the following subring of A(x):

A
[
x,
q

x

]
=

{
amx

m + · · ·+ a1x+ a0 + a−1 ·
q

x
+ · · ·+ a−n ·

qn

xn
: ai ∈ A

}
We have B ∼= A[x, qx ].

Proof. Define a ring homomorphism ϕ : A[x, y]→ A(x) by fixing A pointwise, send-
ing x 7→ x, and sending y 7→ q

x . We claim that ker(ϕ) = 〈xy − q〉. First notice
that xy − q ∈ ker(ϕ), so we certainly have 〈xy − q〉 ⊆ ker(ϕ). Let f(x, y) ∈ ker(ϕ).
Divide by xy − q to write f(x, y) = (xy − q) · g(x, y) + r(x, y) where r(x, y) has
no monomial having both an x and a y. Notice that ϕ(r(x, y)) = ϕ(f(x, y)) = 0.
Writing

r(x, y) = amx
m + · · ·+ a1x+ c+ b1y + · · ·+ bny

n

we then have that

amx
m + · · ·+ a1x+ c+ b1 ·

q

x
+ · · ·+ bn ·

qn

xn
= 0

Multiplying by xn and looking at coefficients, we conclude that each ai = 0, each
bi = 0, and c = 0. Thus r(x, y) = 0, and hence f(x, y) ∈ 〈xy − q〉.

Since B = A[x, y]/〈xy − q〉, it follows that we get an induced injective homo-
morphism ϕ̂ : B → A(x). Since every element of B can be represented in the form
amx

m + · · ·+ a1x+ c+ b1y + · · ·+ bny
n, we conclude that range(ϕ) = range(ϕ̂) =

A[x, qx ], and hence B ∼= A[x, qx ]. �

We will use the different ways of representing elements of the extension B ∼=
A
[
x, qx

]
interchangeably depending on which is most convenient. With this iso-

morphism in mind, we define the following two functions.

Definition 3.4. Define degx : B\{0} → Z as follows. Let σ ∈ B and consider the
unique representation of σ given in Proposition 3.2.

• If there is a term containing a power of x with a nonzero coefficient, then
degx(σ) is the largest such power of x.
• If there is no such power of x, but there is a nonzero constant term, then

degx(σ) = 0.
• If there is no such power of x and no constant term, let m be the least

power of y with a nonzero coefficient, and define degx(σ) = −m.

We define degy : B\{0} → Z similarly.

For example, we have degx(y2 + y5) = −2 and degy(y2 + y5) = 5.

Proposition 3.5. Let σ, τ ∈ B\{0}. We then have

degx(στ) = degx(σ) + degx(τ)

degy(στ) = degy(σ) + degy(τ)
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Proof. It is straightforward to prove this in the case when σ and τ are monomials,
i.e. of the form axk, by`, or c 6= 0 (notice that here we use the fact that A is an
integral domain to conclude that the product is a nonzero monomial). For general
σ and τ , we need only examine the leading x-terms or y-terms. �

Proposition 3.6. We have

degx(σ) + degy(σ) ≥ 0

for all σ ∈ B\{0}, with equality if and only if σ is a constant times a monomial.

Proof. Let σ ∈ B\{0}. If the leading x-term is xm, then degx(σ) = m and
degy(σ) ≥ −m, with equality if and only if xm is the leading y-term as well.
A similar argument works if the leading y-term is yn. Otherwise, we only have a
constant, it which case both degx(σ) = 0 and degy(σ) = 0. �

Proposition 3.7. Let σ, τ ∈ B. We then have that στ ∈ A in exactly the following
cases:

• σ = 0 or τ = 0.
• σ ∈ A and τ ∈ A.
• There exist a, b ∈ A and n ∈ N+ with σ = axn and τ = byn, or there exists
a, b ∈ A and n ∈ N+ with σ = byn and τ = axn.

Proof. In each of these cases it is easy to see that στ ∈ A. Suppose conversely that
στ ∈ A. We may assume that σ 6= 0 and τ 6= 0 or else we are done. We then have

degx(σ) + degx(τ) = degx(στ) = 0

so degx(τ) = −degx(σ). Similarly, we have degy(τ) = −degy(σ). Adding these
gives

degx(τ) + degy(τ) = −degx(σ)− degy(σ) = −(degx(σ) + degy(σ))

Using Proposition 3.6, the only possibility is that degx(τ)+degy(τ) = 0 = degx(σ)+
degy(σ), and hence that both σ and τ are constants times monomials. The result
now follows. �

Corollary 3.8. Let a ∈ A with q - a in A. If σ ∈ B and σ | a in B, then σ ∈ A and
σ | a in A. In other words, the set of divisors of a in B equals the set of divisors
of a in A.

Proof. By Proposition 3.7, the only possible new divisors of a are when a = bxn ·cyn
with n ≥ 1. However, this implies that a = bc · qn, so q | a in A. �

Corollary 3.9. The units of B are precisely the units of A, i.e. U(B) = U(A).

Proof. This is immediate because the set of units is the set of divisors of 1 ∈ A. �

Theorem 3.10. Let A be a computable Noetherian UFD and let q ∈ A be prime.
Let B = A[x, y]/〈xy − q〉 as above.

(1) We can build B as a computable extension of A uniformly.
(2) If p1, p2 ∈ Primes(A) are not associates in A, then they are not associates

in B.
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(3) Let p ∈ Primes(A)\AssociatesA(q) and let σ ∈ B. We have that p | σ in
B if and only every coefficient of σ is divisible by p in A. In particular,
there are no new elements of A that are multiples of p in B. Furthermore,
if we have a computable index for the set {a ∈ A : p | a in A}, then we can
uniformly computably obtain a computable index for the set {σ ∈ B : p | σ
in B}.

(4) Primes(A)\AssociatesA(q) ⊆ Primes(B).
(5) x | σ in B if and only if the constant term and the coefficients of each yj

in σ are all divisible by q in A. Therefore, if we have a computable index
for the set {a ∈ A : q | a in A}, then we can uniformly computably obtain
a computable index for the set {σ ∈ B : x | σ in B}.

(6) y | σ in B if and only if the constant term and the coefficients of each xi

in σ are all divisible by q in A. Therefore, if we have a computable index
for the set {a ∈ A : q | a in A}, then we can uniformly computably obtain
a computable index for the set {σ ∈ B : y | σ in B}.

(7) x and y are primes in B that are not associates of each other in B.
(8) x and y are not associates in B with any element of A, and hence not with

any element of Primes(A).
(9) B is a Noetherian UFD.

Proof. (1) Immediate from Proposition 3.2.
(2) Immediate from Corollary 3.9.
(3) This follows from the fact that

p · (amxm + · · ·+ a1x+ c+ b1y + · · ·+ bny
n)

= pamx
m + · · ·+ pa1x+ pc+ pb1y + · · ·+ pbny

n.

(4) Let p ∈ Primes(A)\AssociatesA(q). Notice that p is nonzero and is not a
unit of B by Corollary 3.9. Let σ, τ ∈ B and suppose that p | στ . Assume
that p - σ and p - τ . We clearly have that both σ and τ are nonzero.
Using 3, we know that p divides every coefficient of στ in A, but there are
coefficients of σ and τ that are not divisible by p in A. Write

σ = amx
m + · · ·+ a1x+ a0 + a−1 ·

q

x
+ · · ·+ a−n ·

qn

xn

and

τ = bmx
m + · · ·+ b1x+ b0 + b−1 ·

q

x
+ · · ·+ b−n ·

qn

xn

Let k and ` be largest possible such that p - ak in A and p - b` in A. Look
at the coefficient of xk+` in στ . This coefficient will be a sum of terms, one
of which is akb`q

j for some j, while other terms will be divisible by p in
A. Since p divides the resulting coefficient, it follows that p | akb`qj in A.
However, this is a contradiction because p is prime in A but divides none
of ak, b`, or q (the last because p is not an associate of q in A).

(5) Let σ ∈ B and write

σ = amx
m + · · ·+ a1x+ c+ b1y + · · ·+ bny

n

Suppose first that q | c and q | bj in A for each j. Fix e ∈ A with c = qe
and fix dj ∈ A such that bj = qdj for all j. We then have

x · (amxm−1 + · · ·+ a1 + ey + d1y
2 + · · ·+ dny

n+1) = σ
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Conversely, suppose that x | σ, so that

σ = x · (amxm + · · ·+ a1x+ c+ b1y + · · ·+ bny
n)

for some ai, c, bj ∈ A. Then we have

σ = amx
m+1 + . . . a1x+ cx+ qb1 + qb2y + . . . qbny

n−1

(6) Similar to 5.
(7) Notice that x is nonzero and is not a unit of B by Corollary 3.9. Let

σ, τ ∈ B and suppose that x | στ . Assume that x - σ and x - τ . We clearly
have that both σ and τ are nonzero. Using 5, we know that q divides the
constant term and the coefficients of each yj in στ in A. Write

σ = amx
m + · · ·+ a1x+ a0 + b1y + · · ·+ bny

n

and

τ = cmx
m + · · ·+ c1x+ c0 + d1y + · · ·+ dny

n

By 5, we may let k and ` be largest possible such that q - ak in A and q - c`
in A. Look at the coefficient of xk+` in στ . This coefficient will be a sum
of terms, one of which is akc`, while other terms will be divisible by q in
A. Since q divides the resulting coefficient, it follows that q | akc` in A.
However, this is a contradiction because q is prime in A but divides neither
of ak or c` in A.

The proof that y is prime in B is similar. The fact that x and y are not
associates in B follows from Corollary 3.9.

(8) Immediate from Corollary 3.9.
(9) We are assuming that A is a Noetherian UFD. Since A is Noetherian, we

know that A[x, y] is Noetherian by the Hilbert Basis Theorem. Since B is
a quotient of A[x, y], it follows that B is also Noetherian. We also know
from 7 that x is prime in B ∼= A[x, qx ]. To argue that B is a UFD, we use
Nagata’s Criterion (see [9, Theorem 20.2] or [5, Lemma 19.20]) which says
the following.

Theorem 3.11 (Nagata’s Criterion). Let B be a Noetherian integral do-
main. Let Γ be a set of prime elements of B, and let S be the multiplicative
set generated by Γ. If S−1B is a UFD, then B is a UFD.

Now x is prime in B ∼= A[x, qx ] by 7. The localization of A[x, qx ] at x

equals A[x, qx ,
1
x ] = A[x, 1x ], which is the localization of A[x] at x. Since

A is a UFD, we know that A[x] is a UFD . Since any localization of a
UFD is a UFD, it follows that A[x, 1x ] is a UFD. Since B is a Noetherian
integral domain, x is prime in B, and B localized at x is a UFD, we may
use Nagata’s Criterion to conclude that B is a UFD.

�

4. Construction and Verification

We now prove Theorem 1.6. Let Q be an arbitrary Π0
2 set. Fix a computable

R ⊆ N3 such that

i ∈ Q⇐⇒ (∀w)(∃z)R(w, z, i)

Fix a bijective computable pairing function 〈·, ·〉 : N × N → N with the property
that 〈i, s〉 < 〈i, t〉 whenever s < t.
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We work in stages, and begin by initializing with A0 = Z. We now start at stage

0. At a given stage, we will have introduced finitely many x
(k)
i and y

(k)
i for each i,

and we will have marked a finite initial segment of N corresponding to those w ∈ N
for which we have found a witnessing z and done an action. Furthermore, if i has

been initialized and the first unmarked w is k, then we will have introduced x
(`)
i

and y
(`)
i for each ` ≤ k, but we will not yet have introduced x

(k+1)
i and y

(k+1)
i .

Suppose that we are now at a stage 〈i, s〉 and we have constructed through ring
An at this stage.

• If s = 0, we do an initialization for pi by introducing a first factorization.

In other words, we introduce x
(0)
i and y

(0)
i and perform the factorization

construction on pi to create the ring An+1 (so we fill in one more column),
and then move on to the next stage.
• Suppose that s ≥ 1, and let k be the first unmarked w corresponding to i.

Check to see if there exists z ≤ s such that R(w, z, i). If not, we do nothing
and move to the next stage. If so, we mark k for i, and we act for i at
this stage, meaning that we do the following. As mentioned above, we will

have introduced through x
(k)
i and y

(k)
i . First, we perform the localization

construction to make y
(k)
i a unit in order to create the ring An+1. Next,

we introduce x
(k+1)
i and y

(k+1)
i and perform the factorization construction

with these on pi to create the ring An+2. Thus, we fill in two more columns
in succession, and then move on to the next stage.

Finally, let A∞ =
⋃∞
n=0An.

Theorem 4.1. Suppose that we are at the beginning of a given stage and we have

constructed through An. For each i that has been initialized, let x
(ki)
i and y

(ki)
i be

the last elements introduced for i (so ki is the first unmarked w for i).

• Suppose that i has not yet been initialized. We have the following:
– pi is prime in An.
– The set {a ∈ An : pi | a in An} is computable and we can uniformly

find a computable index for it.
– For any uninitialized j 6= i, we have that pi is not an associate of pj

in An.
– For any initialized j 6= i, we have that pi is not an associate of either

x
(kj)
j or y

(kj)
j in An.

• Suppose that i has been initialized. We have the following:

– x
(ki)
i and y

(ki)
i are prime in An, and are not associates in An.

– The sets {a ∈ An : x
(ki)
i | a in An} and {a ∈ An : y

(ki)
i | a in An} are

computable and we can uniformly find computable indices for them.

– For any uninitialized j 6= i, we have that x
(ki)
i and y

(ki)
i are not asso-

ciates of pj in An.

– For any initialized j 6= i, we have that x
(ki)
i is not an associate of

either x
(kj)
j or y

(kj)
j in An, and y

(ki)
i is not an associate of either x

(kj)
j

or y
(kj)
j in An.

• Suppose that we act for i at this stage. We then have y
(ki)
i ∈ U(An+1), that

x
(ki)
i is prime in An+1, and that pi is prime in An+1.
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Proof. The proof is immediate by using induction on the stages along with Theorem
2.3 and Theorem 3.10. �

Definition 4.2. Let i, k ∈ N and suppose that we introduce x
(k)
i and y

(k)
i in our

construction. We call x
(k)
i and y

(k)
i terminal for i if we never introduce x

(k+1)
i and

y
(k+1)
i for i.

Proposition 4.3. We have the following.

(1) Suppose that we introduce x
(k)
i and y

(k)
i in Am. If x

(k)
i and y

(k)
i are terminal

for i, then they are non-associate primes in An for each n ≥ m.

(2) If r ∈ Am is prime in Am and is not an associate of any pi, x
(k)
i , or y

(k)
i

(whether terminal or nonterminal) in Am, then r remains prime in An for
each n ≥ m.

Proof. Again, this follows by induction using Theorem 2.3 and Theorem 3.10. �

Proposition 4.4. Let a ∈ A∞, so a ∈ Am for some m ∈ N. The following are
equivalent:

(1) a ∈ U(A∞).
(2) a ∈ U(An) for all sufficiently large n ≥ m.
(3) a ∈ U(An) for some n ≥ m.

Proof. If a ∈ U(A∞), then fixing b ∈ A∞ with ab = 1, we have that a ∈ U(An) for
any n large enough such that a, b ∈ An. If a ∈ U(An) for some n ≥ m, then fixing
b ∈ An with ab = 1, we have a, b ∈ A∞, so a ∈ U(A∞). �

Proposition 4.5. Let r ∈ A∞, so r ∈ Am for some m ∈ N. If there are infinitely
many n ≥ m such that r is prime in An, then r is prime in A∞.

Proof. Suppose that there are infinitely many n ≥ m such that r is prime in An.
Fix a, b ∈ A∞ and suppose that r | ab in A∞. Fix c ∈ A∞ with rc = ab. Go to
a point where each of r, c, a, b exist, and then fix an n beyond that such that r is
prime in An. We then have r | ab in An, so as r is prime in An, either r | a in An
or r | b in An. Therefore, either r | a in A∞ or r | b in A∞. Finally, notice that r
is nonzero and not a unit in A∞ because infinitely often it is not a unit in An (as
infinitely often it is prime in An). �

Corollary 4.6. We have the following.

(1) If x
(k)
i and y

(k)
i are introduced and are terminal for i, then they are non-

associate primes in A∞.

(2) If x
(k)
i and y

(k)
i are introduced and are nonterminal for i, then y

(k)
i ∈

U(A∞), and x
(k)
i is an associate of pi in A∞.

(3) If r ∈ Am is prime in Am and is not an associate of any pi, x
(k)
i , or y

(k)
i

in Am (whether terminal or nonterminal), then r remains prime in A∞.

Proof. Immediate from Theorem 4.1, Proposition 4.3, Proposition 4.4, and Propo-
sition 4.5. �

Corollary 4.7. pi is prime in A∞ if and only if i ∈ Q.
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Proof. Suppose first that i ∈ Q. We then act for i infinitely often, and hence
pi is prime in infinitely many An by Theorem 4.1. Thus, pi is prime in A∞ by
Proposition 4.5.

Suppose now that i /∈ Q. We then act for i finitely often, so we may fix k such

that x
(k)
i and y

(k)
i are terminal for i. By Corollary 4.6, each of x

(k)
i and y

(k)
i are

prime in A∞. Since pi = x
(k)
i y

(k)
i , it follows that pi is not irreducible in A∞, and

hence not prime in A∞. �

Lemma 4.8. Let m ∈ N. Let r ∈ A∞ and suppose that r is prime in Am. We then
have that either r ∈ U(A∞), r is prime is A∞, or r is the product of two primes in
A∞.

Proof. We handle the various cases.

• If there exists i ∈ Q such that r is an associate of pi in Am, then r is prime
in A∞ by Corollary 4.7.
• Suppose that there exists i /∈ Q such that r is an associate of pi in Am.

We then act for i finitely often, so we may fix k such that x
(k)
i and y

(k)
i are

terminal for i. By Corollary 4.6, each of x
(k)
i and y

(k)
i are prime in A∞. We

then have that pi = x
(k)
i y

(k)
i , so r = ux

(k)
i y

(k)
i for some unit u ∈ U(A∞).

Since ux
(k)
i and y

(k)
i are prime in A∞, we see that r is the product of two

primes in A∞.

• If there exists i, k ∈ N such that r is an associate of a terminal x
(k)
i in Am,

then r is prime in A∞ by Corollary 4.6.

• If there exists i, k ∈ N such that r is an associate of a terminal y
(k)
i in Am,

then r is prime in A∞ by Corollary 4.6.
• If there exists i ∈ Q and k ∈ N such that r is an associate of a nonterminal

x
(k)
i in Am, then r is an associate of pi in A∞ by Corollary 4.6 and hence
r is prime in A∞ by Corollary 4.7.

• If there exists i /∈ Q and k ∈ N such that r is an associate of a nonterminal

x
(k)
i in Am, then r is an associate of pi in A∞ by Corollary 4.6, and hence
r is a product of two primes in A∞ from above.

• If there exists i, k ∈ N such that r is an associate of a nonterminal y
(k)
i in

Am, then r ∈ U(A∞) by Corollary 4.6.

• If r is not an associate of any pi, x
(k)
i , or y

(k)
i in Am, then r is prime in A∞

by Corollary 4.6.

�

Theorem 4.9. A∞ is a UFD.

Proof. We prove that every nonzero nonunit element of A∞ is a product of irre-
ducibles and that every irreducible is prime, which suffices by Theorem 1.3.

Let a ∈ A∞ be nonzero and not a unit. Fix n with a ∈ An and notice that a
is not a unit in An. Since An is a UFD, we may write a = r1r2 · · · r` where each
ri is irreducible and hence prime in An. By Lemma 4.8, each rj is either a unit in
A∞, is prime in A∞, or is the product of two primes in A∞. It’s not possible that
all rj are units in A∞, because this would imply that a is a unit in A∞. Thus, a
is a product of primes in A∞ (since we can absorb the units in one of the primes).
Since primes are irreducible, we conclude that a is a product of irreducibles in A∞.
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We now show that every irreducible element of A∞ is prime. Let a ∈ A∞ be
irreducible. Fix n with a ∈ An. Notice that a is nonzero and not a unit in An
because otherwise it would be zero or a unit in A∞. Since An is a UFD, we may
write a = r1r2 · · · r` where each rj is irreducible and hence prime in An. By Lemma
4.8, each rj is either a unit in A∞, is prime in A∞, or is the product of two primes
in A∞. It’s not possible that all rj are units in A∞, because this would imply that
a is a unit in A∞. If some rj is a product of two primes in A∞, then a is not
irreducible in A∞, a contradiction. Also, if two of the rj are prime in A∞, then A
is not irreducible in A∞, a contradiction. Thus, exactly one of the ri is prime in
A∞ and the rest are units. It follows that A is a prime times some units in A∞, so
a is prime in A∞. �

This completes the proof of Theorem 1.6.
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