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Abstract. We show that the existence of a nontrivial proper ideal
in a commutative ring with identity which is not a field is equivalent
to WKL0 over RCA0. We also prove that there are computable com-
mutative rings with identity where the nilradical is Σ0

1-complete,
and the Jacobson radical is Π0

2-complete, respectively.

1. Introduction

It was only about a hundred years ago that algebra slowly turned
away from an algorithmic approach toward a more abstract, axiomatic
approach. (See, e.g., Metakides and Nerode [10] and Stoltenberg-
Hansen and Tucker [20].) The use of computers in understanding
algebraic objects has highlighted the need to understand the effec-
tive, or algorithmic, content of mathematics. Classical studies in this
area include the famous studies of the effective content of field theory:
Fröhlich and Shepherdson [5], Mal’cev [7], Rabin [13], and Metakides
and Nerode [8, 9]. As witnessed by these studies and the work in, for
instance, combinatorial group theory, we also get an additional moti-
vation for trying to understand the algorithmic content of algebra. Not
only is it the case that we gain insight into the algorithmic nature of
the structures, but we also often gain additional algebraic insight into
the structures themselves. For example, Rabin showed that each com-
putable field1 has a computable algebraic closure, but in Metakides and
Nerode [8] it is shown that the usual method of constructing such a
closure is possible iff there is a “splitting algorithm.” The point is that
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Rabin’s construction of the algebraic closure must be distinct from the
usual one.

In recent years, this area has evolved into an active field of research,
in particular by researchers in computability theory and proof theory.
Researchers in proof theory have become interested in questions of ef-
fectiveness since such issues are closely related to provability in weak
proof-theoretic systems. Again the motivation is both intrinsic and
relates to additional algebraic structure. For example, as we discuss
in detail below, Friedman, Simpson and Smith [3, 4] proved that the
existence of maximal ideals in commutative rings with identity is equiv-
alent to a certain system ACA0, whereas the existence of prime ideals
is equivalent to a provably weaker system WKL0. The point again is
that there must be another way to construct prime ideals which does
not filter through maximal ones. (More on this in Section 2.)

This paper is a contribution to the study of the effective content
of the theory of ideals in commutative rings. Thus we follow ear-
lier papers such as, for instance, Baumslag, Cannonito, and Miller [1],
Richman [14], Seidenberg [15, 16], Shlapentokh [17], and Stoltenberg-
Hansen and Tucker [18, 19]. For general background we refer the reader
to [20].

A companion paper by the authors as well as Hirschfeldt, Kach, and
Montalbán [2] will study the effective content of the theory of subspaces
of a vector space.

Throughout this paper, by a ring we mean a commutative ring with
identity. Our goal here is to analyze the complexity of ideals in a ring
relative to the complexity of the ring itself, and our main approach is
to use computability theory to formulate and answer these questions.
Computability theory provides hierarchies and structures by which we
can measure the complexity of mathematical objects, and techniques
by which to classify them. This framework provides a robust setting
in which to gauge not only the information content of mathematical
objects up to algorithmic transformations, but also how difficult it is
to define certain mathematical objects.

Definition 1.1. A computable ring is a computable subset R ⊆ N
equipped with two computable binary operations + and · on R, together
with two elements 0, 1 ∈ R such that (R, 0, 1, +, ·) is a ring.

One particular motivation in the results below is to understand what
is lost when one trades elements for ideals. For example, consider the
following elementary characterization of when a ring is a field.

Proposition 1.2. A ring R is a field if and only if it has no nontrivial
proper ideals.
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The question is whether this process of shifting from elements to
ideals forces us to sacrifice “effectiveness”, which can be made precise
with the concept of computability. The issue here is the right-to-left
direction. Suppose that R is a computable ring which is not a field,
and fix a ∈ R such that a is not a unit. We then have that I =
(a) is a nontrivial proper ideal. However, from the point of view of
computability theory, the ideal I may not be computable. Given an
element b ∈ R, it seems that in order to determine whether b ∈ I, we
need to check r · a for every r ∈ R, and if we simply start looking at
multiples we may never know when to stop. More precisely, the ideal I
is computably enumerable but it is not clear that it is computable.
We thus ask the following effective analogues of the above proposition:
Given a computable ring R which is not a field, should principal ideals
in R be computable. Should any principal ideal be computable? Must
there exist a any nontrivial proper ideal I of R which is computable? If
the answer is negative, how high in the hierarchies of noncomputability
must we look in order to observe nontrivial proper ideals? Should
principal ideals be more complicated than other proper ideals, or less
so?

Another goal is to understand the complexity of certain special ideals
of a ring. For example, let R be a ring. The Jacobson radical of R is
defined to be the intersection of all maximal ideals of R. Notice that
this definition involves quantifying over ideals of the ring, and hence
over subsets of the ring. From the computability-theoretic perspective,
quantifying over subsets can potentially lead to extremely complicated
objects (that is, into the analytical hierarchy). Another description of
the Jacobson radical, which says that a is in the Jacobson radical of R
if and only if ab + 1 is a unit for all b ∈ R, which is to say that

a ∈ Jac(R) ⇔ ∀b∃c((ab + 1)c = 1)

involves quantifying over elements of the ring followed by a computable
statement (whether (ab + 1)c = 1 can be checked computably). One
could ask whether this description is optimal in its quantifier complex-
ity. For example, is it possible that there is a one quantifier descrip-
tion (using only existential quantification, or only universal quantifi-
cation, on top of the operations in the ring) or one that involves an
∃∀-description?

Another perspective is to approach these problems from the view-
point of reverse mathematics. Whereas in the computability-theoretic
approach, we use classical mathematical tools and are interested in the
complexity of various mathematical objects, in the reverse mathemat-
ics approach, we carefully gauge the axioms that are necessary and
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sufficient to prove theorems of mathematics, such as Proposition 1.2.
The weakest base system of axioms considered here is denoted by RCA0

and roughly captures proofs that could be called “effective” or “com-
putable”. Thus, an analogue of the effective version of Proposition 1.2
above would to ask whether it is provable in RCA0. It turns out that
there are only a handful of systems more powerful than RCA0, each of
which assert the existence of more complicated types of sets, such that
most classical mathematics theorems are equivalent, over RCA0, to one
of these systems. Thus, using the program of reverse mathematics,
we are able to precisely calibrate the strength of the set existence ax-
ioms necessary and sufficient to prove various mathematical theorems,
including Proposition 1.2.

2. Computability Theory and Reverse Mathematics

2.1. Computability Theory. For general references on computabil-
ity theory, please consult Odifreddi [11, 12] or Soare [22]. We call a
function f : Nn → N or set A ⊆ Nn computable if it falls into any of the
many equivalent formal notions (such as Turing machine computable or
general recursive). We say that a set A ⊆ N is computably enumerable,
or c. e., if either A = ∅ or A = ran(f) for some computable function f .

We may also relativize notions of computability, and for A, B ⊆ N
we write A ≤T B if A is computable relative to B (which can be given
a formal definition in terms of oracle Turing machines, for example).
The equivalence classes of the corresponding equivalence relation are
called Turing degrees or simply degrees. We typically denote degrees
by lower case bold letters such as d, and we write a ≤ b to mean that
A ≤T B for some (any) A ∈ a and B ∈ b. Given a set X ⊆ N, we use
deg(X) to denote the degree of X. We use 0 to denote the degree of the
computable sets. Given a set A ⊆ N, we let A′ be the set corresponding
to the halting problem of A (that is, the set which codes all halting
computations relative to A, or, equivalently, which effectively codes all
existential questions relative to A). Also, given a degree a, we let a′ be
deg(A′) for some (any) A ∈ a.

Computably enumerable sets correspond to an existential question
relative to a computable set, and we may form a hierarchy of sets
by alternating quantifiers (because we can code two like quantifiers as
one). This gives rise to the arithmetical hierarchy.

Definition 2.1. Let n ∈ N.
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(1) A set B ⊆ Nm is Σ0
n if there exists a computable A ⊆ Nn+m

such that for all x1, x2, . . . , xm ∈ N, we have

(x1, x2, . . . , xm) ∈ B ⇔
∃y1∀y2∃y3 · · ·Qyn[(x1, x2, . . . , xm, y1, y2, . . . , yn) ∈ A]

where Q is ∀ if n is even and is ∃ if n is odd.
(2) A set B ⊆ Nm is Π0

n if there exists a computable A ⊆ Nn+m

such that for all x1, x2, . . . , xm ∈ N, we have

(x1, x2, . . . , xm) ∈ B ⇔
∀y1∃y2∀y3 · · ·Qyn[(x1, x2, . . . , xm, y1, y2, . . . , yn) ∈ A]

where Q is ∃ if n is even and is ∀ if n is odd.

Proposition 2.2. A set A ⊆ N is c. e. if and only if is it Σ0
1.

Before describing some other important classes of degrees which will
play a role below, we first give a couple of examples of how degrees
and the arithmetical hierarchy can be used to describe the complexity
of ideals in rings. Notice that if R is a computable ring, then every
finitely generated ideal of R is c. e. and so has degree at most 0′. In
particular, if R is a computable Noetherian ring, then every ideal of R
is c. e. and so has degree at most 0′.

Friedman, Simpson, and Smith [3, 4] showed that 0′ exactly captures
the degree where you need to look in order to ensure that you can find
a maximal ideal.

Theorem 2.3 (Friedman, Simpson, Smith [3, 4]).

(1) Suppose that R is a computable ring. Then there exists a max-
imal ideal M of R such that deg(M) ≤ 0′.

(2) There is computable local ring R such that deg(M) = 0′ for the
unique maximal ideal M of R.

One combinatorial principle which often plays an important role
in understanding the effectiveness of certain mathematical objects is
König’s Lemma about infinite trees. We collect here the important
facts that we’ll need.

Definition 2.4. We use 2<N to denote the set of all finite sequences
of 0’s and 1’s, partially ordered by the substring relation ⊆.

Definition 2.5.

(1) A tree is a subset T of 2<N such that for all σ ∈ T , if τ ∈ 2<N

and τ ⊆ σ, then τ ∈ T .
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(2) If T is a tree and S ⊆ T is also a tree, we say that S is a
subtree of T .

(3) A branch of a tree T is a function f : N → {0, 1} such that
f � n ∈ T for all n ∈ N (where f � n is the finite sequence of
the first n values of f).

Proposition 2.6 (Weak König’s Lemma). Every infinite subtree of 2<N

has an infinite branch.

One important fact about Weak König’s Lemma is that it does not
hold effectively. That is, we have the following proposition.

Proposition 2.7. There exists an infinite computable subtree of 2<N

with no infinite computable branch.

To codify the degrees which are able to find solutions to Weak
König’s Lemma, we introduce the following definition.

Definition 2.8 (Simpson). Let a and b be Turing degrees. We write
a � b to mean that every infinite b-computable subtree of 2<N has an
infinite a-computable branch.

By Proposition 2.7, it follows that 0 6� 0. Building on Kreisel’s Basis
Theorem, which states that 0′ � 0, Jockusch and Soare [6] proved the
following result which implies that there are degrees strictly below 0′

that suffice to find branches through infinite computable trees.

Theorem 2.9 (Low Basis Theorem - Jockusch, Soare [6]). There exists
a � 0 such that a′ = 0′.

Roughly speaking, the fundamental characteristic of prime ideals,
which is that whenever a · b ∈ P we have either a ∈ P or b ∈ P , is
similar to having a choice in the branching of a tree. Building on this
analogy, we have the following theorem about prime ideals.

Theorem 2.10 (Friedman, Simpson, Smith [3, 4]).

(1) Suppose that R is a computable ring and that d � 0. Then
there exists a prime ideal P of R such that deg(P ) ≤ d.

(2) There is computable ring R such that deg(P ) � 0 for all prime
ideals P of R.

Instead of working with trees directly in the arguments below, it
will be simpler to work with c. e. sets and the following equivalent
characterization of degrees a � 0.

Proposition 2.11. Suppose that a is a degree. The following are equiv-
alent.
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(1) a � 0.
(2) Whenever A, B ⊆ N are disjoint c. e. sets, there exists an a-

computable set C such that A ⊆ C and B ∩C = ∅ (we call C a
separator for A and B).

In fact, there are c. e. sets which have the property that if a degree
a is able to computable a separator for them, then a can compute a
separator for all such pairs of c. e. sets.

Proposition 2.12. There exists disjoint c. e. sets A, B ⊆ N such that
whenever C is a set with A ⊆ C and B ∩C = ∅, we have deg(C) � 0.

2.2. Reverse Mathematics. We refer the reader to Simpson [21] as
the standard reference for reverse mathematics. In this context, we
work with a weak base system RCA0 (which stands for Recursive Com-
prehension Axiom) which consists of the discretely ordered semiring ax-
ioms for N, together with ∆0

1-comprehension and Σ0
1-induction. Proofs

which only involve “effective” constructions and verifications can of-
ten be carried out in RCA0. For example, the standard proofs of the
following proposition easily go through in RCA0.

Proposition 2.13. The following are provable in RCA0.

(1) If a ring R is a field, then it has no nontrivial proper ideals.
(2) If I is an ideal of R such that R/I is a field, then I is maximal.

If we add the formal statement that for every set X, the set X ′ exists,
then we get the system ACA0 (which stands for Arithmetical Compre-
hension Axiom). Since X ′ is not computable for computable sets X,
it follows that ACA0 is strictly stronger than the system RCA0. Proofs
which only involve “arithmetical” constructions and verifications can
often be carried out in ACA0. For example, the simple argument given
for the following proposition in the introduction easily goes through
in ACA0.

Proposition 2.14. In ACA0, one can prove that if a ring R has no
nontrivial proper ideals, then it is field. In fact, in ACA0, one can prove
that if a ring R has no nontrivial proper principal ideals, then it is a
field.

By the computability-theoretic results above, it follows that the
statement of Weak König’s Lemma is not provable in RCA0. The
system WKL0 consists of RCA0 together with the statement of Weak
König’s Lemma. Making use of the Low Basis Theorem, one can show
that WKL0 lies strictly between RCA0 and ACA0. By a careful analysis
of the arguments in Proposition 2.3 and Proposition 2.10, one arrives
at the following theorems.
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Theorem 2.15 (Friedman, Simpson, Smith [3, 4]).

(1) Over RCA0, the statement “Every ring has a maximal ideal” is
equivalent to ACA0.

(2) Over RCA0, the statement “Every ring has a prime ideal” is
equivalent to WKL0.

2.3. Building Computable Rings. Typical rings such as Z and Q[x]
come equipped with natural representations as computable rings. Us-
ing such representations of standard rings, we can construct interesting
examples of computable rings by taking subrings and quotient rings in
two different ways.

We first consider subrings. Suppose that A is an infinite computable
ring. If S is a computable subset of A which is a subring, then we
certainly can view S as a computable ring in its own right. However,
suppose more generally that S is an infinite c. e. subset of A which
is a subring. Even in this more general setting, we may realize the
subring S as a computable ring R in the following way. Since S is an
infinite c. e. subset of A, there exists a computable bijective function
h : N → S. Let R be the computable ring obtained by letting the
universe be N, letting 0R = h−1(0A) and 1R = h−1(1A), letting a+R b =
h−1(h(a) +A h(b)), and letting a ·R b = h−1(h(a) ·A h(b)). Notice that
h : R → S is a computable isomorphism.

We next consider quotients. Suppose that A is a computable ring
and J is computable subset of A which is an ideal. We may realize the
quotient ring A/J as a computable ring in the following way. Let R
be the set of minimal elements (with respect to the ordering on N) of
cosets of J in A, and notice that R is computable. Define a computable
function h : A → R by letting h(a) be the unique element of R such that
a − h(a) ∈ J . Make R into a computable ring by letting 0R = h(0A)
and 1R = h(1A), letting a+R b = h(a+A b) and letting a ·R b = h(a ·A b).
Notice that this makes R into a computable ring and as such h is a
computable surjective homomorphism with kernel J .

3. Finding Nontrivial Proper Ideals

Returning to our original question of whether we can effectively de-
tect ideals in computable rings which are not fields, we have the fol-
lowing simple upper bound.

Proposition 3.1. Suppose that R is a computable ring which is not
a field, and that d � 0. Then there exists a nontrivial proper ideal I
of R such that deg(I) ≤ d.
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Proof. We may assume that 0R and 1R are the numbers 0 and 1. Fix
a ∈ R with a 6= 0 such that a is not a unit. Let T ⊆ 2<N be the set of
all σ such that

• σ(0) = 1 if |σ| > 0.
• σ(1) = 0 if |σ| > 1.
• σ(a) = 1 if |σ| > a.
• For any b, c ∈ R, if σ(b) = σ(c) = 1 and b +R c < |σ|, then

σ(b +R c) = 1.
• For any b ∈ R, if σ(b) = 1, r < |σ|, and r ·R b < |σ|, then

σ(r ·R b) = 1.

Notice that T is a computable subtree of 2<N. Furthermore, T is infinite
since the characteristic function of the ideal (a) is an infinite branch
of T . Hence, T has an infinite d-computable branch, coding an ideal I
of R. It follows that there exists a nontrivial proper ideal I of R such
that deg(I) ≤ d. �

Our main result here is that there is a computable ring R (in fact,
an integral domain), which is not a field, for which the crude upper
bound on the complexity of nontrivial proper ideals is achieved. The
rough idea of the construction is as follows. Fix the c. e. sets A and B
from Proposition 2.12 and computable functions α, β : N → N such
that A = ran(α) and B = ran(β). Build a computable ring R with
distinguished elements xn for each n ∈ N, and attempt to satisfy the
following requirements:

(1) For all r ∈ R with r 6= 0, we have r | xα(n) for all n ∈ N.
(2) For all r ∈ R with r 6= 0, we have r | (xβ(n) − 1) for all n ∈ N.

If we are successful, then any nontrivial proper ideal must contain xα(n)

for each n ∈ N and must not contain xβ(n) for every n ∈ N (because
otherwise it would contain 1). Thus, from a nontrivial proper ideal we
could compute a separator for A and B.

The simplest setting to put this idea into practice is to work in
the field of fractions F of Z[x] = Z[x1, x2, . . . ]. It suffices to give a
c. e. subring of F by the construction outlined in Section 2.3. Thus,
the idea is to let S be the subring of F generated by

Z[x] ∪ {
xα(i)

p
: i ∈ N, p ∈ Z[x]− {0}}∪

{
xβ(j) − 1

q
: j ∈ N, q ∈ Z[x]− {0}}

Since the above set of generators is c. e., S will also be c. e. However,
a simple argument shows that S = F , so S is a field.
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Therefore, a balancing act is needed here, which is to introduce
enough divisibilities in the above strategy to encode what we need
into the ideals, while ensuring that we don’t introduce too many to
collapse S into a field. The modification needed is to relax the above
requirements to the following requirements:

(1) For all r ∈ R with r 6= 0, we have r | xα(n) for all but finitely
many n ∈ N.

(2) For all r ∈ R with r 6= 0, we have r | (xβ(n) − 1) for all but
finitely many n ∈ N.

Finite sets don’t affect what is encoded into ideals, and by relaxing the
divisibility conditions we can ensure that the ring constructed is not a
field.

Theorem 3.2. There is a computable integral domain R which is not
a field such that deg(I) � 0 for all nontrivial proper ideals I of R.

Proof. Fix the c. e. sets A and B from Proposition 2.12 and computable
functions α, β : N → N such that A = ran(α) and B = ran(β). Let F
be the fraction field of Z[x] = Z[x1, x2, . . . ]. We build a computable
ring R by giving a c. e. subset S of F and using the construction in
Section 2.3. For each n ∈ N, let Z[x]n be the subring of Z[x] consisting
of those elements f with i < n for all xi occurring in f . Let

A = {
xα(i)

p
: i ∈ N, p ∈ Z[x]α(i) − {0}}

and let

B = {
xβ(j) − 1

q
: j ∈ N, q ∈ Z[x]β(j) − {0}}

Notice that A and B are c. e. subsets of F . Let S be the subring of F
generated by Z[x] ∪ A ∪B. Since

g1 ·
xα(i)

p1

+ g2 ·
xα(i)

p2

= (g1p2 + g2p1) ·
xα(i)

p1p2

and

h1 ·
xβ(j) − 1

p1

+ h2 ·
xβ(j) − 1

p2

= (h1p2 + h2p1) ·
xβ(j) − 1

p1p2

it follows that

S = {f +
∑
i∈I

gi ·
xα(i)

pi

+
∑
j∈J

hj ·
xβ(j) − 1

qj

: I, J ⊆ N are finite,

f, gi, hj ∈ Z[x], pi ∈ Z[x]α(i) − {0}, qj ∈ Z[x]β(j) − {0}}
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We first claim that S is not a field. Fix k /∈ A ∪ B. We show that
1
xk

/∈ S. Suppose instead that 1
xk
∈ S and write

1

xk

= f +
∑
i∈I

gi ·
xα(i)

pi

+
∑
j∈J

hj ·
xβ(j) − 1

qj

where I and J are finite and |I ∪ J | is minimal. Notice that since 1
xk

/∈
Z[x], we have |I∪J | ≥ 1. Let m = max({α(i) : i ∈ I}∪{β(j) : j ∈ J})
and notice that pi ∈ Z[x]m for all i ∈ I and qj ∈ Z[x]m for all j ∈ J .

Let p =
∏

i∈I pi and let q =
∏

j∈J qj. For each i ∈ I, let p̂i = p
pi
∈

Z[x], and for each j ∈ J , let q̂j = q
qj
∈ Z[x]. Multiplying through by

pqxk, notice that in Z[x] we have

pq = xk(fpq +
∑
i∈I

gixα(i)p̂iq +
∑
j∈J

hj(xβ(j) − 1)pq̂j)

Case 1: Suppose that m = α(i0) for some i0 ∈ I. Let ϕ : Z[x] →
Z[x] be the homomorphism induced by sending xm to 0 and fixing all
other xn. Notice that ϕ(pi) = pi for all i ∈ I and ϕ(qj) = qj for all
j ∈ J because pi, qj ∈ Z[x]m. Thus, by applying ϕ, we have

pq = xk(ϕ(f)pq +
∑

i∈I−{i0}

ϕ(gi)xα(i)p̂iq +
∑
j∈J

ϕ(hj)(xβ(j) − 1)pq̂j)

and hence

1

xk

= ϕ(f) +
∑

i∈I−{i0}

ϕ(gi) ·
xα(i)

pi

+
∑
j∈J

ϕ(hj) ·
xβ(j) − 1

qj

This is a contradiction because |(I − {i0}) ∪ J | < |I ∪ J |.
Case 2: Suppose that m = β(j0) for some j0 ∈ J . Let ϕ : Z[x] →

Z[x] be the homomorphism induced by sending xm to 1 and fixing all
other xn. Notice that ϕ(pi) = pi for all i ∈ I and ϕ(qj) = qj for all
j ∈ J because pi, qj ∈ Z[x]m. Thus, by applying ϕ, we have

pq = xk(ϕ(f)pq +
∑
i∈I

ϕ(gi)xα(i)p̂iq +
∑

j∈J−{j0}

ϕ(hj)(xβ(j) − 1)pq̂j)

and hence

1

xk

= ϕ(f) +
∑
i∈I

ϕ(gi) ·
xα(i)

pi

+
∑

j∈J−{j0}

ϕ(hj) ·
xβ(j) − 1

qj

This is a contradiction because |I ∪ (J − {j0})| < |I ∪ J |.
Let R be the computable ring with universe N and h : R → S be the

computable isomorphism described in Section 2.3. Suppose that I is a
nontrivial proper ideal of R and fix a ∈ I with a 6= 0. Notice that h(I)
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is a nontrivial proper ideal of S. Fix f, g ∈ Z[x] with f
g

= h(a).

Since h(I) is an ideal of S and g ∈ S, it follows that f ∈ h(I). Fix
` ∈ N such that f ∈ Z[x]`. Let

D = {k ∈ N : h−1(xk) ∈ I}

and notice that D ≤T I. We now show that α(n) ∈ D for all n ∈ N
with α(n) ≥ ` and that β(n) /∈ D for all n ∈ N with β(n) ≥ `. Fix
n ∈ N with α(n) ≥ `. We then have that

xα(n)

f
∈ S, hence xα(n) ∈ h(I)

because h(I) is an ideal of S, and so α(n) ∈ D. We also have that
xβ(n)−1

f
∈ S, hence xβ(n) − 1 ∈ h(I), so xβ(n) /∈ h(I) because h(I) is a

proper ideal of S, and so β(n) /∈ D. �

As a corollary, we get the existence of a computable ring in which
every nontrivial proper finitely generated ideal is as complicated as the
crude upper bound of 0′.

Corollary 3.3. There is a computable integral domain R which is not
a field such that deg(I) = 0′ for all nontrivial proper finitely generated
ideals I of R.

Proof. Let R be the integral domain from above. Suppose that I is a
nontrivial proper finitely generated ideal of R. Notice that I is c. e.
Since deg(I) � 0, it follows by the Arslanov Completeness Criterion
(see, e.g., Soare [22]) that deg(I) = 0′. �

By working carefully in RCA0, we can translate this result into reverse
mathematics. In this context, we define a maximal ideal M in the
natural way (i.e., that there is no proper ideal between M and R),
rather than using the definition in Simpson [21] that R/M is a field.

Proposition 3.4. Over RCA0, the following are equivalent to WKL0.

(1) If a ring R has no nontrivial proper ideals, then it is a field.
(2) If I is a maximal ideal of R, then R/I is a field

Proof. Notice first that (1) and (2) are provably equivalent in RCA0 be-
cause the correspondence theorem for ideals in quotients can be proved
in RCA0.

We work in WKL0 and prove (1). We may assume that 0R and 1R

are the numbers 0 and 1. Fix a ∈ R with a 6= 0 such that a is not a
unit. Let T ⊆ 2<N be the set of all σ such that

• σ(0) = 1 if |σ| > 0.
• σ(1) = 0 if |σ| > 1.
• σ(a) = 1 if |σ| > a.
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• For any b, c ∈ R, if σ(b) = σ(c) = 1 and b +R c < |σ|, then
σ(b +R c) = 1.

• For any b ∈ R, if σ(b) = 1, r < |σ|, and r ·R b < |σ|, then
σ(r ·R b) = 1.

Notice that T is a subtree of 2<N which exists by ∆0
1-comprehension. If

we could argue that T is infinite, then we may use Weak König’s Lemma
to get a branch, and from this branch obtain a nontrivial proper ideal.
Of course, classically T is infinite because there is a nontrivial proper
ideal (as in the proof of Proposition 3.1), but we certainly can’t use
that in our proof here.

Instead, we argue that T is infinite as in the argument in Simpson [21]
that WKL0 proves that every ring has a prime ideal: We define sets Xn

for n ∈ N by primitive recursion as follows. Let X0 = {0, a}. Given
Xn, write n = 2 · 〈i, j, k〉+ d where 〈·, ·, ·〉 is a bijective function coding
triples and d ∈ {0, 1}, and act as follows.

• Suppose that d = 0. If i, j ∈ Xn, let Xn+1 = Xn ∪ {i +R j} and
otherwise let Xn+1 = Xn.

• Suppose that d = 1. If j ∈ Xn, let Xn+1 = Xn ∪ {i ·R j} and
otherwise let Xn+1 = Xn.

By Σ0
1-induction, it follows that 1 is not in the ideal generated by Xn

for all n ∈ N.
We now show that T is infinite. Suppose that m ∈ N. By bounded

Σ0
1-comprehension, we may form the set Y consisting of all i < m such

that ∃n(i ∈ Xn). Now if we let σ ∈ 2<N be the finite sequence of
length m such that σ(i) = 0 if i /∈ Y and σ(i) = 1 if i ∈ Y , then
σ ∈ T . Therefore, T has an element of every length, so T is infinite.
As remarked above, this completes the proof.

We next show that (1) implies WKL0 over RCA0. We use the con-
struction in Theorem 3.2. Suppose that α : N → N and β : N → N
are such that ∀x∀y(α(x) 6= β(y)). The subring of F that we describe
can be given by a Σ0

1 formula ϕ(x), and RCA0 can prove ¬ϕ( 1
xk

) by

Σ0
1-induction. Now RCA0 proves that if ϕ(x) is a Σ0

1-formula such that
there are infinitely many n with ϕ(n), then there exists an injective
function h : N → N such that for all n ∈ N, we have n ∈ ran(h) if
and only if ϕ(n). Thus, we may build the ring given by the above
construction within RCA0. From here, the rest of the argument can be
carried out to show that from a nontrivial proper ideal, one can prove
the existence of a separator for ran(α) and ran(β). �
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It’s natural to expect that we could turn Corollary 3.3 into a proof
that the statement “If a ring R has no nontrivial proper finitely gen-
erated ideals, then it is a field” implies ACA0 over RCA0. However,
that proof used the Arslanov Completeness Criterion, which by work
of Chong and Yang is not provable in RCA0. However, we don’t need
the full power of the Arslanov Completeness Criterion here. We first
prove a simple computability theoretic result (Reference to Maximal
Pair??).

Definition 3.5. For each n ∈ N, let Gn = [n(n+1)
2

, (n+1)(n+2)
2

− 1] so
G0 = {0}, G1 = {1, 2}, G2 = {3, 4, 5}, and in general |Gn| = n + 1.

Lemma 3.6. Suppose that C is c.e. There exists c.e. sets A and B
such that

(1) A ∩B = ∅.
(2) For all n, we have n ∈ C if and only if Gn ∩ A 6= ∅.
(3) For all c.e. sets D such that A ⊆ D and B ∩ D = ∅, we have

that D − A is finite.

Proof. We will build disjoint c.e. sets A and B meeting the following
requirements.

R2e : e ∈ C if and only if Ge ∩ A 6= ∅
R2e+1 : If We − A is infinite, then We ∩B 6= ∅

Fix a computable enumeration {Cs}s∈N of C. We define computable
enumerations {As}s∈N and {Bs}s∈N. We begin at stage 0 by letting
A0 = ∅ = B0. At stage s, given i < s we say that Ri requires attention
at stage s if either

(1) i = 2e, e ∈ Cs, Ge ∩ As = ∅, and Ge −Bs 6= ∅.
(2) i = 2e + 1, We,s ∩ Bs = ∅ and there exists n with e < n < s

such that We,s ∩ (Gn − As) 6= ∅.
Suppose at stage s that some Ri requires attention and fix the least
such i.

(1) If i = 2e, let As+1 = As ∪ {k} where k is the least element of
Ge −Bs and let Bs+1 = Bs.

(2) If i = 2e + 1, let n > e be least such that We,s ∩ (Gn −As) 6= ∅,
let As+1 = As, and let Bs+1 = Bs ∪ {k} where k is the least
element of We,s ∩ (Gn − As).

We say that Ri receives attention at stage s. If at stage s there does
not exist an i such that Ri requires attention, let As+1 = As and let
Bs+1 = Bs. This completes the construction.
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By a simple inuction, we have that A ∩B = ∅. Notice that for each
i there exists at most one s such that Ri receives attention at stage s.
Now by a simple induction on s, we have

(1) For each e, |Ge∩As| = 1 if R2e received attention at some t < s,
and |Ge ∩ As| = 0 otherwise.

(2) For each n, |Gn ∩ Bs| is bounded by the the number of e < n
such that such that R2e+1 received attention at some t < s.

Thus, every Ri is satisfied. �

Analyzing the above proof, we see that the construction all the in-
ductive proofs can be carried out in RCA0 to give the following result.

Lemma 3.7. The following is provable in RCA0. Given a function
γ : N → N, there exists functions α, β : N → N such that

(1) ran(α) ∩ ran(β) = ∅.
(2) For all n, we have n ∈ ran(γ) if and only if Gn ∩ ran(α) 6= ∅.
(3) For all functions δ : N → N such that ran(α) ⊆ ran(δ) and

ran(β) ∩ ran(δ) = ∅, we have that ran(δ)− ran(α) is finite.

Proposition 3.8. Over RCA0, the following are equivalent to ACA0.

(1) If a ring R has no nontrivial proper principal ideals, then it is
a field.

(2) If a ring R has no nontrivial proper finitely generated ideals,
then it is a field.

Proof. By Proposition 2.14, we have that ACA0 proves (1) and we
clearly have that (1) implies (2) over RCA0. Thus, we need only show
that (2) implies ACA0 over RCA0. Suppose that γ : N → N. We need
to prove that ran(γ) exists. Fix α, β : N → N given by Lemma 3.7. We
use the construction in Theorem 3.2 for this α and β to obtain a Σ0

1 for-
mula ϕ(x) giving the subring of F . Fix an injective function h : N → N
such that for all n ∈ N, we have n ∈ ran(h) if and only if ϕ(n), and
form the corresponding ring R. By (2), we may fix a proper nontrivial
finitely generated ideal I of R. Let D = {k ∈ N : h−1(xk) ∈ I} and
notice that D exists and is given by a Σ0

1 formula. Now we can prove
in RCA0 that ran(α)−D is finite and ran(β)∩D are finite, so modulo a
finite set we have that ran(α) ⊆ D and ran(β)∩D = ∅. It follows that
D−ran(α) is finite, hence ran(α) exists because D exists. Since ran(α)
exists and for all n, we have n ∈ ran(γ) if and only if Gn ∩ ran(α) 6= ∅,
it follows that ran(γ) exists. �

4. The Nilradical and Jacobson Radical

Proposition 4.1. If R is a computable ring, then Nil(R) is Σ0
1.
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Proof. We have

Nil(R) = {a ∈ R : ∃n(an = 0)}

Since {(a, n) : an = 0} is computable, it follows that Nil(R) is Σ0
1. �

We next show that this result is optimal. In this case, we use the
quotient construction and build a computable ideal of Z[x]. The idea
here is that if we want to make the element xk nilpotent, we need only
add xn

k for some n to the ideal we are using to take the quotient. Now
we want the ideal to be computable, so if k enters our c. e. set at stage
n, we add xn

k to our ideal.

Theorem 4.2. There exists a computable ring R such that Nil(R) is
Σ0

1-complete.

Proof. Fix a Σ0
1-complete c. e. set A and a computable function α : N →

N such that A = ran(α). We build a computable ring R such that
A ≤1 Jac(R) (see Odifreddi [11, 12] or Soare [22] for the definition of
≤1). Let J be the ideal of Z[x] generated by

{xn
α(n) : n ∈ N}

Notice that a polynomial f ∈ Z[x] is in J if and only if every nonzero
monomial summand of f has a factor xm

i such that there exists n ≤ m
with α(n) = i. In particular, J is a computable ideal. Let R be
the computable quotient ring together with the computable homomor-
phism h : Z[x] → R as described in Section 2.3. Define θ : N → R by
letting θ(k) = h(xk) for all k ∈ N. Since h is a homomorphism with
kernel J , we have that θ(k) = h(xk) ∈ Nil(R) if and only if xn

k ∈ J for
some n ∈ N. Thus,

(1) If k ∈ A, say k = α(n), then xn
k ∈ J , so θ(k) ∈ Nil(R).

(2) If k /∈ A, then θ(k) /∈ Nil(R) because xn
k /∈ J for all n ∈ N.

It follows that A ≤1 Nil(R). �

We turn now to the Jacobson radical.

Proposition 4.3. If R is a computable ring, then Jac(R) is Π0
2.

Proof. By a standard result in commutative algebra, we have

Jac(R) = {a ∈ R : ab + 1 is a unit for all b ∈ R}
= {a ∈ R : ∀b∃c((ab + 1)c = 1)}

Since {(a, b, c) : (ab + 1)c = 1} is computable, it follows that Jac(R)
is Π0

2. �
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We next show that this result is optimal. In this case, we use the
subring construction. The idea is to encode a standard Π0

2-complete
set, such as Inf = {k ∈ N : Wk is infinite} (where Wk is the kth c. e. set
in some standard enumeration) into the Jacobson radical of a ring. We
thus want to build a computable ring R with distinguished elements xn

for each n ∈ N, and attempt to satisfy the following requirements:

(1) For all k ∈ Inf, we have that xk · r + 1 is a unit for all r ∈ R.
(2) For all k /∈ Inf, there exists r ∈ R such that xk · r + 1 is not a

unit.

The idea then is to work in a ring like Z[x], and as we see more and more
elements enter Wk, we put 1

xk·p+1
into S for more and more polynomi-

als p. In order to avoid contamination between these requirements,
it’s helpful to have another stock of variables which gauges how many
polynomials p we’ve put to work for xk.

Theorem 4.4. There exists a computable integral domain R such that
Jac(R) is Π0

2-complete.

Proof. Recall that Inf = {k ∈ N : Wk is infinite} is Π0
2-complete. Let

F be the fraction field of Z[x, y] = Z[x1, x2, . . . , y1, y2, . . . ]. We build a
computable ring R such that Inf ≤1 Jac(R) by giving a c. e. subset S
of F and using the construction in Section 2.3. For each n ∈ N, let
Z[x, y]n be the subring of Z[x, y] consisting of those elements p with
i < n for all yi occurring in p. Also, let Z[x, y]∞ = Z[x, y]. Let

M = {1 +
n∑

i=1

xipi : pi ∈ Z[x, y]|Wi| : i, n ∈ N}

Notice that M is a multiplicative subset of Z[x, y] (and that 1 ∈ M).
Let

S = M−1Z[x, y] = { f

m
: f ∈ Z[x, y], m ∈ M} ⊆ F

and notice that S is c. e.
Suppose first that k ∈ Inf so that Wk is infinite. Let f

m
∈ S and fix

pi ∈ Z[x, y]|Wi| such that m = 1 +
∑n

i=1 xipi. Notice that

xk ·
f

m
+ 1 =

xkf + m

m
=

xkf + 1 +
∑n

i=1 xipi

m

and since xkf + 1 +
∑n

i=1 xipi ∈ M , it follows that

m

xkf + 1 +
∑n

i=1 xipi

∈ S

so xk · f
m

+ 1 is a unit in S. Therefore, xk ∈ Jac(S).
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Suppose now that k /∈ Inf so that Wk is finite. Fix ` > |Wk|. We
claim that xky` + 1 is not a unit in S. If xky` + 1 is a unit in S, then
there exist pi ∈ Z[x, y]|Wi| such that

1

xky` + 1
=

f

1 +
∑n

i=1 xipi

which gives

1 +
n∑

i=1

xipi = f · (xky` + 1)

Let ϕ : Z[x, y] → Z[x, y] be the homomorphism induced by fixing xk

and y`, and sending all other xi and yj to 0. We then have that

1 + xk · ϕ(pk) = ϕ(f) · (xky` + 1)

Now ϕ(f) 6= 0 (because the left-hand side is nonzero), so the right-hand
side has positive y`-degree. However, the left-hand side has y`-degree 0
because pk ∈ Z[x, y]|Wk| ⊆ Z[x, y]`, so we have a contradiction. It
follows that xky` + 1 is not a unit in S, hence xk /∈ Jac(S).

Let R be the computable ring with universe N and h : R → S be the
computable isomorphism described in Section 2.3. Define θ : N → R by
letting θ(k) = h−1(xk) for all k ∈ N. Since h : R → S is a computable
isomorphism, we have that θ is computable and that

k ∈ Inf ⇔ xk ∈ Jac(S) (from above)

⇔ θ(k) = h−1(xk) ∈ Jac(R)

It follows that Inf ≤1 Jac(R). �
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