Homework 7: Due Friday, April 14

Problem 1: (from Exercise 3.5.6) Let (X, \mathcal{S}, μ) be a measure space, and let $T: X \to X$ be a measure-preserving transformation. We say that a set $W \subseteq X$ is wandering if $T^{-m}(W) \cap T^{-n}(W) = \emptyset$ whenever $m, n \in \mathbb{N}$ with $m \neq n$. Show that T is recurrent if and only if X has no wandering subsets of positive measure.

Problem 2: Let $\langle a_n \rangle_{n=1}^{\infty}$ be a bounded sequence of real numbers. Let

$$\ell = \limsup_{n} a_n = \inf_{k} \sup_{n \ge k} a_n.$$

Notice that ℓ exists because the sequence $\langle \sup_{n\geq k} a_n \rangle_{k=1}^{\infty}$ is decreasing and bounded below.

- a. Show that $\langle a_n \rangle$ has a subsequence that converges to ℓ .
- b. Show that if $\langle a_{n_i} \rangle$ is a convergent subsequence of $\langle a_n \rangle$, then $\lim_i a_{n_i} \leq \ell$.

Aside: Part a gives another proof of the Bolzano-Weierstrass Theorem.

Problem 3: Let (X, \mathcal{S}, μ) be a measure space, and let $f, g: X \to \mathbb{R}^*$ be measurable functions.

- a. Show that $\{x \in X : f(x) \neq g(x)\}\$ is measurable.
- b. Assume that $g(x) \in \mathbb{R} \setminus \{0\}$ for all $x \in X$. Show that $\frac{f}{g}$ is measurable.

Problem 4: Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Show that if f is Riemann integrable, then f is Lebesgue integrable, and the resulting values (of the corresponding integrals) are equal.

Problem 5: Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ such that f is not measurable, but $\{x \in \mathbb{R} : f(x) = a\}$ is measurable for each $a \in \mathbb{R}$.

Problem 6: Let (X, \mathcal{S}, μ) be a measure space, and let $f: X \to \mathbb{R}^*$ be a measurable function. Let $E = \{x \in X : f(x) \neq 0\}$ be the support of f. Assume that $\mu(E) < \infty$, that $\mu(\{x \in X : f(x) = \infty\}) = 0$, and that $\mu(\{x \in X : f(x) = -\infty\}) = 0$.

- a. Show that for all $\varepsilon > 0$, there exists $M \in \mathbb{R}$ such that $\mu(\{x \in X : f(x) \notin [-M, M]\}) < \varepsilon$.
- b. Show that for all $\varepsilon > 0$ and all $M \in \mathbb{R}$, there exists a simple function $\varphi \colon X \to \mathbb{R}$ such that $|f(x) \varphi(x)| < \varepsilon$ for all $x \in X$ with $-M \le f(x) \le M$.
- c. Show that for all $\varepsilon > 0$, there exists a simple function $\varphi \colon X \to \mathbb{R}$ such that

$$\mu(\{x \in X : |f(x) - \varphi(x)| \ge \varepsilon\}) < \varepsilon.$$