Homework 4: Due Friday, February 24

Problem 1: (see p. 30) Let (X_1, S_1, μ_1) and (X_2, S_2, μ_2) be two measure spaces, and assume that $X_1 \cap X_2 = \emptyset$ (otherwise, one can simply rename the elements to make this work). Let $Y = X_1 \cup X_2$ and let

$$\mathcal{T} = \{ B \in \mathcal{P}(X_1 \cup X_2) : B \cap X_1 \in \mathcal{S}_1 \text{ and } B \cap X_2 \in \mathcal{S}_2 \}.$$

Finally, define $\nu: \mathcal{T} \to \mathbb{R}$ by letting $\nu(B) = \mu_1(B \cap X_1) + \mu_2(B \cap X_2)$. Show that \mathcal{T} is a σ -algebra on Y and that (Y, \mathcal{T}, ν) is a measure space.

Problem 2: (from Exercise 2.6.3) Show that for every null set $A \subseteq \mathbb{R}$, there exists a Borel null set $B \subseteq \mathbb{R}$ with $A \subseteq B$.

Problem 3: (from Exercise 2.6.10 and Exercise 2.6.13) Let (X, \mathcal{S}, μ) be a measure space. Define a function $d: \mathcal{S} \times \mathcal{S} \to \mathbb{R}$ by letting $d(A, B) = \mu(A \triangle B)$. Show that (\mathcal{S}, d) is a pseudometric space.

Problem 4: (from Exercise 2.5.14) Let (X, \mathcal{S}, μ) be a measure space. Let

$$S_{\mu} = \{ E \in \mathcal{P}(X) : \text{There exists } A, B \in \mathcal{S} \text{ with } A \subseteq E \subseteq B \text{ and } \mu(B \setminus A) = 0 \}.$$

Show that S_{μ} is a σ -algebra containing S.

Problem 5: Let $f: \mathbb{R} \to \mathbb{R}$. Show that the set of points of continuity of f, i.e. the set

$$\{a \in \mathbb{R} : f \text{ is continuous at } a\},\$$

is a \mathcal{G}_{δ} set.

Note: It follows that there is no function that is continuous on \mathbb{Q} and discontinuous on $\mathbb{R}\setminus\mathbb{Q}$.

Definition: Recall the following definitions from class:

- A set $D \subseteq \mathbb{R}$ is dense if for all $x, y \in \mathbb{R}$ with x < y, we have $D \cap (x, y) \neq \emptyset$.
- A set $A \subseteq \mathbb{R}$ is nowhere dense if it is not dense in any interval, i.e. for all $x, y \in \mathbb{R}$ with x < y, there exists $c, d \in \mathbb{R}$ with x < c < d < y such that $A \cap (c, d) = \emptyset$.

Problem 6: Let $A \subseteq \mathbb{R}$. Show that the following are equivalent:

- 1. A is nowhere dense.
- 2. \overline{A} is nowhere dense.
- 3. \overline{A} has empty interior, i.e. \overline{A} contains no nontrivial intervals.
- 4. \overline{A}^c is a dense open set.
- 5. $A^c = \mathbb{R} \setminus A$ contains a dense open set.