Homework 1: Due Friday, February 3

Problem 1: A dyadic rational is a element of \mathbb{Q} that can be written in the form $\frac{a}{2^k}$ for some $a \in \mathbb{Z}$ and $k \in \mathbb{N}$. Show that the set of dyadic rationals is dense in \mathbb{R} , i.e. that whenever $x, y \in \mathbb{R}$ and x < y, there exists a dyadic rational q with x < q < y.

Problem 2:

- a. Show that [0,1] can be written as a countable intersection of open sets.
- b. Give an example of a countable intersection of open sets that is neither open nor closed.
- c. Show that every closed subset of $\mathbb R$ can be written as a countable intersection of open sets.

Problem 3: In class, we defined a metric space whose elements were infinite sequences of 0's and 1's. More formally, let X be the set of all functions $f: \mathbb{N} \to \{0,1\}$. Define $d: X \times X \to \mathbb{R}$ as follows. Given $f,g: \mathbb{N} \to \{0,1\}$, let d(f,g) = 0 if f(n) = g(n) for all $n \in \mathbb{N}$, and otherwise let $d(f,g) = 2^{-m}$, where $m = \min\{n \in \mathbb{N} : f(n) \neq g(n)\}$.

- a. Show that $d(f,h) \leq \max\{d(f,g),d(g,h)\}\$ for all $f,g,h\in X$.
- b. Show that $B(f,\varepsilon)$ is closed for every $f \in X$ and every $\varepsilon > 0$ (we know from Homework 0 that each of these sets is also open).

Note: The triangle inequality condition on metric spaces follows immediately from part a. Metric spaces with this stronger property are called *ultrametric spaces*.

Problem 4: A pseudometric space is a set X together with a function $d: X \times X \to \mathbb{R}$ that satisfies the following properties:

- d(x,x) = 0 for all $x \in X$ and $d(x,y) \ge 0$ for all $x,y \in X$.
- d(x,y) = d(y,x) for all $x, y \in X$.
- $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

Notice that this differs from the definition of a metric space only in that we have the weak inequality $d(x,y) \ge 0$, rather than d(x,y) > 0, whenever $x \ne y$.

- a. Let (X,d) be a pseudometric space. Define a relation by letting $x \sim y$ mean that d(x,y) = 0. Show that \sim is an equivalence relation on X.
- b. For each $x \in X$, let $\overline{x} = \{y \in X : x \sim y\}$ be the equivalence class of X. Let X be the set of equivalence classes of X under \sim . Show that the function $\widetilde{d} \colon \widetilde{X} \times \widetilde{X} \to \mathbb{R}$ defined by letting $\widetilde{d}(\overline{x}, \overline{y}) = d(x, y)$ is well-defined.
- c. Show that (X, d) is a metric space.

Problem 5: Let (X_1, d_1) and (X_2, d_2) be metric spaces, and let $f: X_1 \to X_2$ be a function. Show that the following are equivalent:

- 1. For all $x_1 \in X_1$ and all $\varepsilon > 0$, there exists $\delta > 0$ such that for all $y_1 \in X$ with $d_1(x_1, y_1) < \delta$, we have $d_2(f(x_1), f(y_1)) < \varepsilon$.
- 2. $f^{-1}(D)$ is open in X_1 whenever D is open in X_2 .

Note: The first condition is typically how continuity of a function f is defined for metric spaces, so this problem shows that this analytic condition matches the topological one.