
Homework 1: Due Friday, February 3

Problem 1: A dyadic rational is a element of Q that can be written in the form a
2k

for some a ∈ Z and
k ∈ N. Show that the set of dyadic rationals is dense in R, i.e. that whenever x, y ∈ R and x < y, there
exists a dyadic rational q with x < q < y.

Problem 2:
a. Show that [0, 1] can be written as a countable intersection of open sets.
b. Give an example of a countable intersection of open sets that is neither open nor closed.
c. Show that every closed subset of R can be written as a countable intersection of open sets.

Problem 3: In class, we defined a metric space whose elements were infinite sequences of 0’s and 1’s.
More formally, let X be the set of all functions f : N → {0, 1}. Define d : X × X → R as follows. Given
f, g : N → {0, 1}, let d(f, g) = 0 if f(n) = g(n) for all n ∈ N, and otherwise let d(f, g) = 2−m, where
m = min{n ∈ N : f(n) 6= g(n)}.
a. Show that d(f, h) ≤ max{d(f, g), d(g, h)} for all f, g, h ∈ X.
b. Show that B(f, ε) is closed for every f ∈ X and every ε > 0 (we know from Homework 0 that each of
these sets is also open).
Note: The triangle inequality condition on metric spaces follows immediately from part a. Metric spaces
with this stronger property are called ultrametric spaces.

Problem 4: A pseudometric space is a set X together with a function d : X × X → R that satisfies the
following properties:

• d(x, x) = 0 for all x ∈ X and d(x, y) ≥ 0 for all x, y ∈ X.

• d(x, y) = d(y, x) for all x, y ∈ X.

• d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Notice that this differs from the definition of a metric space only in that we have the weak inequality
d(x, y) ≥ 0, rather than d(x, y) > 0, whenever x 6= y.
a. Let (X, d) be a pseudometric space. Define a relation by letting x ∼ y mean that d(x, y) = 0. Show that
∼ is an equivalence relation on X.
b. For each x ∈ X, let x = {y ∈ X : x ∼ y} be the equivalence class of X. Let X̃ be the set of

equivalence classes of X under ∼. Show that the function d̃ : X̃ × X̃ → R defined by letting d̃(x, y) = d(x, y)
is well-defined.
c. Show that (X̃, d̃) is a metric space.

Problem 5: Let (X1, d1) and (X2, d2) be metric spaces, and let f : X1 → X2 be a function. Show that the
following are equivalent:

1. For all x1 ∈ X1 and all ε > 0, there exists δ > 0 such that for all y1 ∈ X with d1(x1, y1) < δ, we have
d2(f(x1), f(y1)) < ε.

2. f−1(D) is open in X1 whenever D is open in X2.

Note: The first condition is typically how continuity of a function f is defined for metric spaces, so this
problem shows that this analytic condition matches the topological one.


