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Chapter 1

Introduction

1.1 Sums of Squares

Question 1.1.1. Which numbers can be written as the sum of two squares? As we will eventually see,
solving this problem boils down to determining which primes can be written as the sum of two squares. For
example, 5 = 1 + 4, 13 = 4 + 9, 61 = 25 + 36, etc.

We first start with a simple necessary condition.

Proposition 1.1.2. If p is an odd prime which can be written as the sum of two squares, then p ≡ 1
(mod 4).

Proof. It is straightforward to check that for all n ∈ Z, either n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4). Thus, the
sum of two squares must equal one of 0, 1, or 2 modulo 4, and so can not be 3 modulo 4. Now every odd
number is congruent to either 1 or 3 modulo 4, so if p is an odd prime which can be written as the sum of
two squares, then p ≡ 1 (mod 4).

Suppose that p is a prime which is the sum of two squares. We can then fix a, b ∈ Z with p = a2 + b2. In
the Gaussian integers Z[i] we have

p = a2 + b2 = (a+ bi)(a− bi)

so the number p, which is prime in Z, factors in an interesting manner over the larger ring Z[i]. There is a
converse to this as well. In fact, we will eventually be able to show the following theorem.

Theorem 1.1.3. Let p ∈ Z be an odd prime. The following are equivalent.

1. There exist a, b ∈ Z with p = a2 + b2.

2. p is reducible (and hence no longer prime) in Z[i].

3. −1 is a square modulo p, i.e. there exists x ∈ Z such that x2 ≡ −1 (mod p).

4. p ≡ 1 (mod 4).

Putting the above information together, it follows that p can be written as the sum of two squares exactly
when p (which is prime/irreducible in Z) fails to be irreducible in the larger ring Z[i]. We have turned a
number-theoretic question into one about factorizations in a new ring. In order to take this perspective, we
need a solid understanding of factorizations in the ring Z[i]. For example, is the ring a UFD so that we have
unique factorizations into irreducibles? If not, how badly does factorization break down?

5



6 CHAPTER 1. INTRODUCTION

Moreover, the above theorem establishes a connection with the squares in the ring Z/pZ. Determining
which elements in these rings are squares is a fascinating problem and leads to the beautiful result known
as Quadratic Reciprocity. Thus, from this simple example, we see how basic number-theoretic questions can
be understood and hopefully solved using the perspective of the algebraic objects you studied in Abstract
Algebra. This course is largely devoted to justifying this claim.

1.2 Pythagorean Triples

Suppose that you want to understand all Pythagorean triples, that is triples (a, b, c) of positive integers with
a2 + b2 = c2. To find these, it suffices to find all so-called primitive Pythagorean triples, that is Pythagorean
triples (a, b, c) with gcd(a, b, c) = 1, because a general Pythagorean triple is an integer multiple of a primitive
ones.. These are called primitive triples. Given a primitive triple (a, b, c), we have

c2 = a2 + b2 = (a+ bi)(a− bi)

Now one can show (and we will do this), that gcd’s make sense in Z[i] and that a+bi and a−bi are relatively
prime assuming that (a, b, c) is primitive. We will then be able to show that if the product of two relatively
prime elements of Z[i] is a square, then each of the factors must be a square. In particular, we can fix
m,n ∈ Z with

a+ bi = (n+mi)2

We then have
a+ bi = (n2 −m2) + 2mn · i

We conclude that a = n2 −m2 and b = 2mn. From here, it is easy to show that c = m2 + n2. The converse
also holds (any triple (a, b, c) generated this way is a Pythagorean triple), so we obtain a way to parametrize
all primitive Pythagorean triples. There are other more elementary ways to derive these parameterizations
(and we will see them), but this method is faster, generalizes better, and “explains” the formulas in a more
satisfying fashion.

1.3 Solving Other Diophantine Equations

Suppose that we try to find all integer solutions to

x3 = y2 + 1

The solution (1, 0) is clear, but are there any others? Notice that if y is odd, then the right-hand side is
congruent to 2 modulo 4, but 2 is not a cube modulo 4. Thus, we can assume that y is even. We can factor
the right-hand side as

x3 = (y + i)(y − i)

We will be able to show that y+ i and y− i are relatively prime in Z[i], so both are cubes. In particular, we
can write

y + i = (a+ bi)3 = (a3 − 3ab2) + (3a2b− b3)i

so
y = a(a2 − 3b2) 1 = b(3a2 − b2)

The right-hand equation implies b = ±1. If b = 1, we get 1 = 3a2−1, so 2 = 3a2, a contradiction. If b = −1,
we get 1 = −(3a2 − 1), so −3a2 = 0 and a = 0. Thus, we conclude a = 0 and b = −1. Therefore, x = 1 and
this gives y = 0.
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Suppose that we try to find all integer solutions to

x3 = y2 + 19

If you follow the above, you might try to factor this as

x3 = (y +
√
−19)(y −

√
−19)

where we are working in the ring Z[
√
−19]. With some work, one can show that if (x, y) is a solution, then

the only common divisors of y +
√
−19 and y −

√
−19 are ±1, so they are relatively prime. As above, one

then hopes that each of the factors on the right are cubes, and working out similar but more complicated
computations would lead one to conclude that there are no solutions. This would all be great except for the
fact that

182 + 19 = 343 = 73

so (18, 7) is a solution. There is something different about the ring Z[
√
−19] = {a+ b

√
−19 : a, b ∈ Z} which

makes this argument fail, and the fundamental fact is that Z[
√
−19] is not a UFD. However, it turns out

that a slightly larger ring is a UFD, and using this one can show that the only solutions are (±18, 7). This
illustrates how the ring-theoretic structure of certain generalizations of Z have implications for Z itself.

1.4 Fermat’s Last Theorem

We know that there exist nontrivial solutions to x2 + y2 = z2. Fermat’s Last Theorem is the statement that
if n ≥ 3, then there are no solutions to

xn + yn = zn

with each of x, y, z positive integers. Fermat scribbled a note in the margin of one of his books stating that
he had a proof but the margin was too small to contain it. For centuries, mathematicians attempted to prove
this result. If there exists a nontrivial solution for some n, then some straightforward calculations show that
there must be a nontrivial solution for either n = 4 or for some odd prime p. Fermat did show that

x4 + y4 = z4

has no nontrivial solutions. Suppose then that p is an odd prime and we want to show that

zp = xp + yp

has no nontrivial solution. The idea is to factor the right-hand side. Although it may not be obvious at this
point, by setting ζ = e2πi/p, it turns out that

xp + yp = (x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζp−1y)

Thus, if (x, y, z) is a nontrivial solution, we have

zp = (x+ y)(x+ ζy)(x+ ζ2y) · · · (x+ ζp−1y)

The idea then is to work in the ring

Z[ζ] = {a0 + a1ζ + a2ζ
2 + · · ·+ ap−1ζ

p−1 : ai ∈ Z}

Again, one can show that if (x, y, z) is a nontrivial solution, then the factors on the right are “relatively
prime” in Z[ζ]. Lamé put forward this argument and claimed it implied that the factors on the right must
then be pth powers, from which he derived a contradiction and hence claimed a proof of Fermat’s Last
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Theorem. Liouville pointed out that this argument relied essentially on the ring Z[ζ] being a UFD (though
he did not have that terminology). There do exist rings where Z[ζ] does not have unique factorization, but
this was major progress.

In an attempt to “fix” this lack of unique factorization and also to pursue generalizations of Quadratic
Reciprocity, Kummer introduced so-called “ideal numbers” which can be used to restore unique factorization
in these types of rings. These “ideal numbers” were later abstracted and generalized by Dedekind into the
ideals of ring theory. Thus, investigations in number theory itself led to some fundamental concepts in
abstract algebra. It turns out that by moving from elements to ideals, one restores a certain type of unique
factorization.

1.5 The Fundamental Theorem of Arithmetic

Throughout this section, the key ring-theoretic fact about the integers that we will use repeatedly is that an
integer is prime if and only if it is irreducible. Recall that primes are irreducible in every integral domain,
but the converse is not true (and we will certainly see examples of this throughout the course). However, in
this section, pay careful attention to when we are using using the stronger property of being prime (rather
than just irreducible).

Proposition 1.5.1. Every nonzero nonunit n ∈ Z is a product of primes.

Proof. We first prove the result for n ∈ N by strong induction. If n = 2, we are done because 2 itself is
prime. Suppose that n > 2 and we have proven the result for all k with 1 < k < n. If n is prime, we are
done. Suppose that n is not prime and fix a divisor c | n with 1 < c < n. Fix d ∈ N with cd = n. We
then have that 1 < d < n, so by induction, both c and d are products of primes, say c = p1p2 · · · pk and
d = q1q2 · · · q` with each pi and qj prime. We then have

n = cd = p1p2 · · · pkq1q2 · · · q`

so n is a product of primes. The result follows for n ∈ N follows by induction.
Suppose now that n ∈ Z is negative. We then have that −n ∈∈ N and −n ≥ 2. Therefore, from above,

we may write n = p1p2 · · · pk where the pi are prime. We then have

−n = (−p1)p2 · · · pk

Since −p1 is also prime, the result follows.

Definition 1.5.2. Let p ∈ N+ be prime. Define a function ordp : Z→ N∪{∞} as follows. Let ordp(0) =∞,
and given a ∈ Z− {0}, let ordp(a) be the largest k ∈ N such that pk | a.

Lemma 1.5.3. Let p ∈ N+ be prime, let a ∈ Z, and let k ∈ N. The following are equivalent.

1. ordp(a) = k

2. pk | a and pk+1 - a

3. There exists m ∈ Z with a = pkm and p - m

Proof. • 1→ 2 is immediate.

• 2→ 1: Suppose that pk | a and pk+1 - a. We clearly have ordp(a) ≥ k. Suppose that there exists ` > k
with p` | a. Since ` > k, we have ` ≥ k + 1. This implies that pk+1 | p`, so since p` | a we conclude
that pk+1 | a. This contradicts our assumption. Therefore, there is no ` > k with p` | a, and hence
ordp(a) = k.
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• 2 → 3: Suppose that pk | a and pk+1 - a. Fix m ∈ Z with a = pkm. If p | m, then we may fix
n ∈ Z with m = pn, which would imply that a = pkpn = pk+1n contradicting the fact that pk+1 - a.
Therefore, we must have p - m.

• 3 → 2: Fix m ∈ Z with a = pkm and p - m. We clearly have pk | a. Suppose that pk+1 | a and fix
n ∈ Z with a = pk+1n. We then have pkm = pk+1n, so m = pn. This implies that p | m, which is a
contradiction. Therefore, pk+1 - a.

Theorem 1.5.4. Let p ∈ N+ be prime. We have the following.

1. ordp(ab) = ordp(a) + ordp(b) for all a, b ∈ Z.

2. ordp(an) = n · ordp(a) for all a ∈ Z and n ∈ N+.

3. ordp(a+ b) ≥ min{ordp(a), ordp(b)} for all a, b ∈ Z.

4. ordp(a+ b) = min{ordp(a), ordp(b)} for all a, b ∈ Z with ordp(a) 6= ordp(b).

Proof. See Homework 1.

Lemma 1.5.5. Let p ∈ Z be prime.

1. For any prime q that is an associate of p, we have ordp(q) = 1.

2. For any prime q that is not an associate of p, we have ordp(q) = 0.

3. For any unit u, we have ordp(u) = 0.

Proof. 1. Suppose that q is a prime that is an associate of p. Fix a unit u with q = pu. Notice that if
p | u, then since u | 1, we conclude that p | 1, which would imply that p is a unit. Since p is not a unit,
it follows that p - u. Therefore, ordp(q) = 1 by Lemma 1.5.3.

2. Suppose that q is a prime that is not an associate of p. Since q is prime, it is irreducible, so its only
divisors are units and associates. Since p is not a unit nor an associate of q, it follows that p - q.
Therefore, ordp(q) = 0.

3. This is immediate because if p | u, then since u | 1, we could conclude that p | 1. This implies that p
is a unit, which is a contradiction.

Lemma 1.5.6. Let n ∈ Z with n 6= 0. Letting P be the set of primes, we have that

{p ∈ P : ordp(n) > 0}

is finite.

Proof. If ordp(n) > 0, then p | n, hence p ≤ |n| because n 6= 0. The result follows from the fact that for any
nonzero n, the set {m ∈ Z : m ≤ |n|} is finite.

Lemma 1.5.7. Let n ∈ Z and let p ∈ N+ be prime. Suppose that u is a unit, that qi are primes, and that

n = uq1q2 · · · qk

We then have that exactly ordp(n) many of the qi are associates of p.
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Proof. Since
n = uq1q2 · · · qk

we have

ordp(n) = ordp(uq1q2 · · · qk)

= ordp(u) +
k∑
i=1

ordp(qi)

=
k∑
i=1

ordp(qi)

The terms on the right are 1 when qi is an associate of p and 0 otherwise. The result follows.

Theorem 1.5.8 (Fundamental Theorem of Arithmetic). Every nonzero nonunit n ∈ Z factors uniquely into
a product of primes up to order and associates. In other words, suppose that n /∈ {−1, 0, 1} and that

uq1q2 · · · q` = n = wr1r2 · · · r`

where u and w are units, and each of the qi and rj are primes. We then have that k = ` and there exists
σ ∈ Sk such that qi and rσ(i) are associates for all i.

Proof. Let p be an arbitrary prime. We know from the lemma that exactly ordp(n) many of the qi are
associates of p, and also that exactly ordp(n) many of the rj are associates of p. Thus, for every prime
p, there are an equal number of associates of p on each side. Matching up the elements on the left with
corresponding associates on the right gives the required permutation.

Proposition 1.5.9. Let m,n ∈ Z. The following are equivalent.

1. m and n are associates.

2. ordp(m) = ordp(n) for all primes p.

Proof. Suppose first that m and n are associates. Fix a unit u with m = nu. For any prime p, we then have

ordp(m) = ordp(nu)
= ordp(n) + ordp(u)
= ordp(n)

Suppose conversely that ordp(m) = ordp(n) for all primes p. Notice that k = 0 if and only if ordp(k) = ∞
for all primes p. Also, notice that k is a unit if and only if ordp(k) = 0 for all primes p because every nonzero
nonunit is a product of primes. Thus, the result holds if either of m or n (or both) are 0 or units. Assume
then that both m and n are nonzero nonunits. Write m and n as products of primes, say

m = q1q2 · · · qk

and
n = r1r2 · · · r`

Now using the above lemma, for any prime p, we have that exactly ordp(m) many of the qi are associates
of p, and exactly ordp(n) many of the rj are associates of p. Since ordp(m) = ordp(n) for all primes p, we
conclude that for any prime p, the number of associates of p amongst the qi equals the number of associates
of p amongst the rj . Thus, k = ` and we may match up associate pairs in the two factorizations. By
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rearranging the products, we may assume that qi are ri are associates for every i. For each i, fix a unit u
with ri = uiqi. We then have

n = r1r2 · · · rk
= (u1q1)(u2q2) · · · (ukqk)
= u1u2 · · ·uk · q1q2 · · · qk
= (u1u2 · · ·uk)m

Since the product of units is a unit, we conclude that u1u2 · · ·uk is a unit. Therefore, m and n are associates.

Proposition 1.5.10. Let d, n ∈ Z. We have that d | n if and only if ordp(d) ≤ ordp(n) for all primes p.

Proof. Suppose that d | n. Fix k ∈ Z with n = dk. For any prime p, we have ordp(n) = ordp(d) + ordp(k).
Since ordp(k) ≥ 0, we conclude that ordp(d) ≤ ordp(n) for any prime p.

Suppose conversely that ordp(d) ≤ ordp(n) for all primes p. Let F = {p ∈ P : ordp(n) > 0}. We know
from above that F is finite, so we may let

k =
∏
p∈F

pordp(n)−ordp(d)

For any p ∈ F , we have ordp(k) = ordp(n)− ordp(d) and therefore

ordp(dk) = ordp(d) + ordp(k)
= ordp(d) + (ordp(n)− ordp(d))
= ordp(n)

Also, for any prime p ∈ P\F , we have ordp(d) ≤ ordp(n) = 0, so

ordp(dk) = ordp(d) + ordp(k)
= 0 + 0
= ordp(n)

It follows that n and dk are associates. In particular, we have that dk | n. Since d | dk, we conclude that
d | n.

Proposition 1.5.11. Let m,n ∈ Z. We have gcd(m,n) = 1 if and only if for all primes p, at most one of
ordp(m) or ordp(n) is nonzero.

Proof. Suppose there exists a prime p such that both ordp(m) > 0 and ordp(n) > 0. Fix such a prime p.
We then have that p a common divisor of m and n, so gcd(m,n) 6= 1.

Conversely, suppose that gcd(m,n) 6= 1. Let d = gcd(m,n). Since d > 1, we may fix a prime p | d. We
then have that p is a common divisor of m and n, so ordp(m) ≥ 1 and ordp(n) ≥ 1.

Proposition 1.5.12. Let m ∈ Z and let n ∈ N+. We have that some associate of m is an nth power in Z
if and only if n | ordp(m) for all primes p.

Proof. Suppose first that some associate of m is an nth power in Z. We may then fix u, d ∈ Z such that u is
a unit and mu = dn. For any prime p, we then have that

ordp(m) = ordp(u−1dn)

= ordp(u−1) + n · ordp(d)
= n · ordp(d)
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Therefore, n | ordp(m) for every prime p.
Suppose conversely that n | ordp(m) for all primes p. Let F = {p ∈ P : ordp(m) > 0} and recall that F

is finite. For each p ∈ F , fix ep ∈ Z with ordp(m) = nep. Notice that ep > 0 for all p ∈ F because n > 0 and
each ordp(m) > 0. Define

d =
∏
p∈F

pep

We then have
dn =

∏
p∈F

pnep

hence ordp(dn) = nep = ordp(m) for all primes p. Therefore, m and dn are associates.

Corollary 1.5.13. Let m ∈ Z be nonzero and let n ∈ N+.

1. Suppose that n is odd. We then have that m is an nth power in Z if and only if n | ordp(m) for all
primes p.

2. Suppose that n is even. We then have that m is an nth power in Z if and only if m ≥ 0 and n | ordp(m)
for all primes p.

Proof. The first statement follows from the fact that if n is odd, then each unit of Z (i.e. each of ±1) is a
nth power because 1n = 1 and (−1)n = −1. Therefore, if some associate of m is an nth power, then m itself
must also be an nth power.

The second statement follows from the fact that ±1 are the only units and the fact that if n is even, then
all nth powers are positive. Thus, if m is an nth power, then m ≥ 0. Conversely, if m ≥ 0 and some associate
of m is an nth power, then that associate must be m itself because the only associates of m are ±m.

Theorem 1.5.14. Suppose that a, b ∈ Z are relatively prime and that ab is a square. If both a ≥ 0 and
b ≥ 0, then both a and b are squares.

Proof 1. Suppose that both a ≥ 0 and b ≥ 0. Since ab is a square, we know that 2 | ordp(ab) for all primes
p, hence 2 | ordp(a) + ordp(b) for all primes p. Furthermore, since a and b are relatively prime, we know
that for each prime p, at most one of ordp(a) or ordp(b) is nonzero. Let p be prime. If ordp(a) = 0, then
trivially 2 | ordp(a). If ordp(a) 6= 0, then ordp(b) = 0, hence ordp(a) = ordp(a) + ordp(b) and so 2 | ordp(a).
Therefore, 2 | ordp(a) for all p. Since a ≥ 0, we conclude that a is a square. The proof that b is a square is
completely analogous (or simply note that ab = ba).

Proof 2. First suppose that a = 0. Since a and b are relatively prime, this implies that b = 1, so clearly both
a and b are squares. Similarly, if b = 0, then a = 1 and we are done.

Now suppose that a = 1. We then have that b = ab so since ab is a square we clearly have that b is a
square. Similarly, if b = 1, then a = ab is a square.

Suppose then that a, b ≥ 2. Write each of a and b in terms of its unique prime factorization:

a = pα1
1 pα2

2 · · · p
αk
k

b = pβ1
1 pβ2

2 · · · p
βk
k

where we are assume that the pi are distinct primes and αi, βi, γi ≥ 0 for all i (although some may be zero).
We then have

ab = pα1+β1
1 pα2+β2

2 · · · pαk+βkk

Now ab is a square, so by Proposition 1.44 in the notes we conclude that αi + βi is even for all i.
We now show that a is a square. Fix i with 1 ≤ i ≤ k. If αi = 0, then αi is certainly even. Suppose that

αi > 0. We must have βi = 0 because otherwise pi would divide both a and b, which would contradict the
fact that a and b are relatively prime. Therefore, αi = αi +βi is even. We have shown that αi is even for all
i, so a is a square. The proof that b is a square is completely analogous (or simply note that ab = ba).
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Notice that we needed to assume that a, b ≥ 0. To see why this is true, simply notice that 6 = (−2) ·(−3),
but −2 and −3 are not squares in Z.

1.6 Primes

Proposition 1.6.1. There are infinitely many primes.

Proof. We know that 2 is a prime, so there is at least one prime. We will take an arbitrary given finite list of
primes and show that there exists a prime which is omitted. Suppose then that p1, p2, . . . , pk is an arbitrary
finite list of prime numbers with k ≥ 1. We show that there exists a prime not in the list. Let

n = p1p2 · · · pk + 1

We have n ≥ 3, so by the above corollary we know that n is divisible by some prime q. If q = pi, we would
have that q | n and also q | p1p2 · · · pk, so q | (n− p1p2 · · · pk). This would imply that q | 1, a contradiction.
Therefore q 6= pi for all i, and we have succeeded in finding a prime not in the list.

Theorem 1.6.2. There are infinitely many primes p ≡ 3 (mod 4).

Proof. We know that 3 is a prime, so there is at least one such prime. We will take an arbitrary given finite
list of primes and show that there exists a prime which is omitted. Suppose then that p1, p2, . . . , pk is an
arbitrary finite list of prime numbers with k ≥ 1 such that pi ≡ 3 (mod 4) for all i. We show that there
exists a prime not in the list. Let

n = 4p1p2 · · · pk − 1

Notice that n ≥ 4− 1 > 3, so n is a product of primes. Now n ≡ −1 ≡ 3 (mod 4), so n is odd, and hence 2
can not appear in the product. Also, all primes other than 2 are odd, so all such primes must be congruent
to one of 1 or 3 modulo 4.

Notice that if a ≡ 1 (mod 4) and b ≡ 1 (mod 4), then ab ≡ 1 (mod 4). Since n ≡ 3 (mod 4), it is
impossible that all of these prime divisors of n are congruent to 1 modulo 3. We conclude that some prime
q in the factorization of n satisfies q ≡ 3 (mod 4). For this q, we have that q | n. Now suppose that q = pi
for some i. We would then have that q | n and q | 4p1p2 · · · pk, hence q | (4p1p2 · · · pk − n), i.e. q | 1. This
is contradiction, so it follows that q 6= pi for any i. We have thus found a prime q such that q ≡ 3 (mod 4)
and q 6= pi for all i, so q is a prime congruent to 3 modulo 4 which is not in the list of pi.

1.7 Pythagorean Triples from an Elementary Viewpoint

Definition 1.7.1. A Pythagorean triple is a triple of positive integers (a, b, c) with a2 + b2 = c2.

Definition 1.7.2. A Pythagorean triple (a, b, c) is primitive if gcd(a, b, c) = 1.

Proposition 1.7.3. A Pythagorean triple (a, b, c) is primitive if and only if every pair of elements from
(a, b, c) are relatively prime.

Proof. Let (a, b, c) be a Pythagorean triple. If every pair of elements from (a, b, c) are relatively prime, then
gcd(a, b) = 1, so trivially gcd(a, b, c) = 1 and hence (a, b, c) is primitive. Suppose conversely that some pair
from (a, b, c) are not relatively prime. We have the following cases.

• Suppose that gcd(a, b) 6= 1. Fix a prime p dividing both a and b. We then have that p | a2 and p | b2,
so p | (a2 + b2) which is to say that p | c2. Since p is prime, we conclude that p | c. Therefore, p is a
divisor of each of a, b, c, hence gcd(a, b, c) 6= 1.



14 CHAPTER 1. INTRODUCTION

• Suppose that gcd(a, c) 6= 1. Fix a prime p dividing both a and c. We then have that p | a2 and p | c2,
so p | (c2 − a2) which is to say that p | b2. Since p is prime, we conclude that p | b. Therefore, p is a
divisor of each of a, b, c, hence gcd(a, b, c) 6= 1.

• Suppose that gcd(b, c) 6= 1. Fix a prime p dividing both b and c. We then have that p | b2 and p | c2,
so p | (c2 − b2) which is to say that p | a2. Since p is prime, we conclude that p | a. Therefore, p is a
divisor of each of a, b, c, hence gcd(a, b, c) 6= 1.

Thus, in all cases, we have that gcd(a, b, c) 6= 1, so (a, b, c) is not primitive.

Proposition 1.7.4. Every Pythagorean triple is an integer multiple of a primitive Pythagorean triple.

Proof. Let (a, b, c) be a Pythagorean triple. Let d = gcd(a, b, c). We then have

(a
d

)2

+
(
b

d

)2

=
a2 + b2

d2
=
c2

d2
=
( c
d

)2

so (a/d, b/d, c/d) is also a Pythagorean triple. If it is not primitive, then it is straightforward to argue that
d 6= gcd(a, b, c).

Proposition 1.7.5. Let (a, b, c) be a primitive Pythagorean triple. We then have that exactly one of a or b
is even, and also that c is odd.

Proof. If both a and b are even, then gcd(a, b) ≥ 2, so from above we have that (a, b, c) is not primitive.
Suppose that both a and b are odd. We then have that a2 ≡ 1 (mod 4) and b2 ≡ 1 (mod 4), so a2 + b2 ≡ 2
(mod 4). This implies that c2 ≡ 2 (mod 4) which is a contradiction because the only squares modulo 4 are
0 and 1.

Since exactly one of a and b is even, we can’t have that c is even for otherwise some pair of elements
would not be relatively prime.

Notice that if (a, b, c) is a Pythagorean triple, then trivially (b, a, c) is a Pythagorean triple. We now
determine all primitive Pythagorean triples with b even.

Theorem 1.7.6. Let (a, b, c) be a primitive Pythagorean triple with b even. There exist relatively prime
positive integers m < n having distinct parities (i.e. one even and one odd) such that

a = n2 −m2 b = 2mn c = m2 + n2

Furthermore, every such triple is a primitive Pythagorean triple with b even.

Proof. We have a2 + b2 = c2, so b2 = c2 − a2 and hence

b2 = (c− a)(c+ a)

We claim that gcd(c− a, c+ a) = 2. Suppose that d is a common divisor of c− a and c+ a. We then have
that d | [(c−a)+(c+a)], so d | 2c. We also have d | [(c+a)−(c−a)], so d | 2a. It follows that d | gcd(2b, 2c).
Since gcd(2b, 2c) = 2 · gcd(b, c) = 2 · 1 = 2, it follows that either d = 1 or d = 2. Since a and c are both odd,
we conclude that c− a and c+ a are both even. Therefore, gcd(c− a, c+ a) = 2.

Fix r, s, t ∈ N+ with c− a = 2r, c+ a = 2s, and b = 2t. We then have

(2t)2 = 2r · 2s

so
4t2 = 4rs
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and hence
t2 = rs

Notice that gcd(r, s) = 1 (if d > 1 is a common divisor of r and s, then 2d > 2 is a common divisor of c− a
and c+ a). Since rs is a square and gcd(r, s) = 1, it follows that each of r and s are squares. Fix m,n ∈ N+

with r = m2 and s = n2. We now have

c− a = 2m2 and c+ a = 2n2

Therefore
2a = (c+ a)− (c− a) = 2n2 − 2m2 = 2(n2 −m2)

so a = n2 −m2. We also have

2c = (c− a) + (c+ a) = 2m2 − 2n2 = 2(m2 + n2)

so c = m2 + n2. Finally, we have

b2 = (c− a)(c+ a) = 2m2 · 2n2 = (2mn)2

so b = 2mn. Notice that m < n because c − a < c + a. Also, gcd(m,n) = 1 because gcd(r, s) = 1 and any
common divisor of m and n is a common divisor of r = m2 and s = n2. Finally, m and n have distinct
parities because otherwise each of a, b, c would be even, contrary to the fact that (a, b, c) is primitive.

We now prove the last statement. Let m < n be relatively prime positive integers with distinct parities.
Let

a = n2 −m2 b = 2mn c = m2 + n2

We then have

a2 + b2 = (n2 −m2)2 + (2mn)2

= n4 − 2m2n2 +m4 + 4m2n2

= m4 + 2m2n2 + n4

= (m2 + n2)2

= c2

so (a, b, c) is a Pythagorean triple. Clearly, b = 2mn is even. Thus, to finish the argument, we need only show
that (a, b, c) is primitive. Suppose that p ∈ Z is a common divisor of a, b, and c. Notice that a = n2 −m2

is odd because m and n have distinct parities, so p 6= 2. Now p divides c + a = 2n2 and also p divides
c− a = 2m2. Since p is an odd prime, this implies that p is a common divisor of m and n, which contradicts
the fact that m and n are relaticely prime.
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Chapter 2

Elementary Number Theory from an
Algebraic Viewpoint

2.1 The Ring Z/nZ
Let n ∈ N+ and consider the principal ideal nZ = 〈n〉. Since nZ is an ideal of Z, we may form the quotient
ring ZnZ. Recall that elements of a quotient ring are additive cosets of nZ. Thus, a typical element of Z/nZ
has the form a+ nZ for some a ∈ Z. Also recall that two cosets a+ nZ and b+ nZ are equal exactly when
a− b ∈ nZ, which is equivalent to saying that n | a− b. Thus, a+nZ = b+nZ if and only if a ≡ b (mod n).
In other words, the relation on Z defined by equality of cosets is the same relation as modular arithmetic.
In fact, the quotient ring construction is just a generalization of modular arithmetic. In what follows, we
will typically write a rather than a+ nZ.

Recall that the key reason you studied ideals in abstract algebra was that the naive operations of addition
and multiplication of cosets via representatives are well-defined. These naive definitions are

(a+ nZ) + (b+ nZ) = (a+ b) + nZ

and
(a+ nZ) · (b+ nZ) = ab+ nZ

Saying that these operations are well-defined means that if a+ nZ = c+ nZ and b+ nZ = d+ nZ, then

(a+ b) + nZ = (c+ d) + Z

and
ab+ nZ = cd+ nZ

Restated in terms of modular arithmetic, this says that if a ≡ c (mod n) and b ≡ d (mod n), then

a+ b ≡ c+ d (mod n)

and
ab ≡ cd (mod n)

If you have forgotten how to justify these well-defined properties directly (rather than from the more general
ring-theoretic construction), you should work through them.

To summarize, given a, b ∈ Z, the following all express the same thing.

• a = b

17
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• a+ nZ = b+ nZ

• a ≡ b (mod n)

• n | (a− b)

• n | (b− a)

Much of this chapter is devoted to the study of the commutative ring Z/nZ. As an additive group, Z/nZ
is fairly easy to understand because it is trivially a cyclic group of order n generated by 1. However, the
multiplicative structure is much more interesting. In particular, we will spend time trying to understand the
multiplicative group of units U(Z/nZ).

2.2 Euler’s Theorem and Fermat’s Theorem

Recall that for any a ∈ Z, we have that a ∈ U(Z/nZ) if and only if gcd(a, n) = 1. Thus, |U(Z/nZ)| is
the number of integers a ∈ {0, 1, 2, . . . , n − 1} such that gcd(a, n) = 1. We introduce a special function to
describe this situation.

Definition 2.2.1. We define a function ϕ : N+ → N+ as follows. For each n ∈ N+, we let

ϕ(n) = |{a ∈ {0, 1, 2, . . . , n− 1} : gcd(a, n) = 1}|

The function ϕ is called the Euler ϕ-function or Euler totient function.

Therefore, by definition, we have |U(Z/nZ)| = ϕ(n) for all n ∈ N+. Notice that ϕ(p) = p − 1 for all
primes p because all numbers in the set {1, 2, . . . , p− 1} are relatively prime to p.

Theorem 2.2.2 (Euler’s Theorem). Let a ∈ Z and n ∈ N+. If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).

Algebraic Proof. Consider the group G = U(Z/nZ). Since gcd(a, n) = 1, we have that a is a unit in Z/nZ
and so is an element of the multiplicative group G. Now |G| = ϕ(n) from above, so by Lagrange’s Theorem
in group theory, we know that |a| divides |G| = ϕ(n). Thus, aϕ(n) = 1 in G, i.e. aϕ(n) ≡ 1 (mod n).

Elementary Proof. Let b1, b2, . . . , bϕ(n) be the numbers between 0 and n− 1 which are relatively prime to n.
Consider the list of numbers ab1, ab2, . . . , abϕ(n). Notice that each of these numbers is relatively prime to n,
and none of them are congruent to the others (because a has a multiplicative inverse modulo n). Thus, each
element of the latter list of numbers is congruent to exactly one of the numbers in the former list. It follows
that

b1 · b2 · · · bϕ(n) ≡ (ab1) · (ab2) · · · (abϕ(n)) (mod n)

and thus
(b1 · b2 · · · bϕ(n)) ≡ aϕ(n) · (b1 · b2 · · · bϕ(n)) (mod n)

Now the product b1 · b2 · · · bϕ(n) is relatively prime to n because each bi is relatively prime to n. Multiplying
both sides by the inverse of this element, we conclude that

1 ≡ aϕ(n) (mod n)

Corollary 2.2.3 (Fermat’s Little Theorem). Suppose that p ∈ N+ is prime.

• If a ∈ Z and p - a, then ap−1 ≡ 1 (mod p).
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• For all a ∈ Z, we have ap ≡ a (mod p).

Proof. Since p is prime, we know that ϕ(p) = p−1. Thus, the first part follows immediately from the Euler’s
Theorem. We now prove the second part. Suppose that a ∈ Z is arbitrary. If p | a, then p | ap trivially, so
ap ≡ 0 ≡ a (mod p). On the other hand, if p - a, then gcd(a, p) = 1, so ap−1 ≡ 1 (mod p) by the first part.
Multiplying both sides of this by a, we conclude that ap ≡ a (mod p).

2.3 Chinese Remainder Theorem

Theorem 2.3.1 (Chinese Remainder Theorem - Elementary Version with Two Moduli). Suppose that the
numbers m,n ∈ Z are relatively prime and a, b ∈ Z. There exists x ∈ Z such that

x ≡ a (mod m) and x ≡ b (mod n)

Furthermore, if x0 ∈ Z is one solution to the above congruences, then an arbitrary x ∈ Z is also a solution
if and only if x ≡ x0 (mod mn).

Proof 1 - Elementary Nonconstructive Proof. Let m,n ∈ Z be such that gcd(m,n) = 1. Consider the mn
many numbers in the set S = {0, 1, 2, . . . ,mn − 1}. Now if i, j ∈ S are such that i ≡ j (mod m) and i ≡ j
(mod n), then m | (i − j) and n | (i − j), so mn | (i − j) because gcd(m,n) = 1, which implies that i = j
because −mn < i− j < mn. Therefore each of the mn many numbers in S given distinct pairs of remainders
upon division by m and n. Since the number of such pairs is m · n and |S| = mn, it follows that every pair
of remainders appears exactly once. In particular, given a, b ∈ Z, there exists x0 ∈ S such that both

x0 ≡ a (mod m) and x0 ≡ b (mod n)

We now verify the last statement. Let a, b ∈ Z. Suppose that x0 is one solution. Suppose first that x ≡ x0

(mod mn). We then have that x ≡ x0 ≡ a (mod m) and x ≡ x0 ≡ b (mod n), so x is also a solution.
Suppose conversely that x ≡ a (mod m) and x ≡ a (mod n). We then have that x ≡ x0 (mod m) and
x ≡ x0 (mod n), so m | (x − x0) and n | (x − x0). Since m and n are relatively prime, it follows that
mn | (x− x0), hence x ≡ x0 (mod mn).

Proof 2 - Elementary Constructive Proof. Since gcd(m,n) = 1, we may fix k, ` ∈ Z with km+`n = 1. Notice
that km ≡ 1 (mod n) so k is the multiplicative inverse of m in Z/nZ. Similarly, we have `n ≡ 1 (mod m),
so ` is the multiplicative inverse of m in Z/mZ. Let x0 = bkm+ a`n. We check that x0 satisfies the above
congruences:

• Since `n ≡ 1 (mod m), we have a`n ≡ a (mod m). Now bkm ≡ 0 (mod m), so adding these congru-
ences we get x0 ≡ a (mod m).

• Since km ≡ 1 (mod n), we have bkm ≡ b (mod n). Now a`n ≡ 0 (mod n), so adding these congruences
we get x0 ≡ b (mod n).

The verification of the last statement is identical to the proof above.

Example 2.3.2. Find all x ∈ Z which simultaneously satisfy

x ≡ 3 (mod 14) and x ≡ 8 (mod 9)

Solution. Notice that 2 · 14 + (−3) · 9 = 1 which can be found by inspection or by the Euclidean Algorithm:

14 = 1 · 9 + 5
9 = 1 · 5 + 4
5 = 1 · 4 + 1
4 = 4 · 1 + 0
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Therefore, working backwards, we have

1 = 5− 4
= 5− (9− 5)
= (−1) · 9 + 2 · 5
= (−1) · 9 + 2 · (14− 9)
= 2 · 14 + (−3) · 9

The proof of the Chinese Remainder Theorem lets x0 = 8 · 2 · 14 + 3 · (−3) · 9 = 143. Thus, the complete
solution is all x which satisfy x ≡ 143 (mod 126), i.e. all x which satisfy x ≡ 17 (mod 126).

Although the elementary proofs are fairly direct and straightforward, we get much more information and
elegance by abstracting the above ideas to the following version. There are no fundamentally new ideas in
the this proof compared to the elementary one, but

Theorem 2.3.3 (Chinese Remainder Theorem - Algebraic Version with Two Moduli). If m,n ∈ Z are
relatively prime, then

Z/(mn)Z ∼= Z/mZ× Z/nZ

as rings via the map φ(k + (mn)Z) = (k + mZ, k + nZ). In particular, the map φ is surjective so for all
a, b ∈ Z, there exists a unique k ∈ {0, 1, 2, . . . ,mn− 1} such that

k +mZ = a+mZ and k + nZ = b+ nZ

Proof. Define a function ψ : Z→ Z/mZ× Z/nZ by φ(k) = (k +mZ, k + nZ). We then have that φ is a ring
homomorphism, and

ker(ψ) = {k ∈ Z : ψ(k) = (0 +mZ, 0 + nZ)}
= {k ∈ Z : (k +mZ, k + nZ) = (0 +mZ, 0 + nZ)}
= {k ∈ Z : k +mZ = 0 +mZ and k + nZ = 0 + nZ}
= {k ∈ Z : m | k and n | k}
= {k ∈ Z : mn | k} (since gcd(m,n) = 1)
= (mn)Z

Therefore, by the First Isomorphism Theorem, we have

Z/(mn)Z ∼= ran(ψ)

as rings via the function
k + (mn)Z 7→ (k +mZ, k + nZ)

Now both of rings Z/(mn)Z and Z/mZ × Z/nZ have mn many elements, and the map above is injective,
so it must be surjective. Alternatively, one can prove that the function is surjective constructively using the
elementary proof. Thus

Z/(mn)Z ∼= Z/mZ× Z/nZ

Both the existence and uniqueness statements follow.

The fact that the above function is surjective is really just the elementary version of the Chinese Re-
mainder Theorem. However, the algebraic proof shows that the function taking an integer modulo mn to
the pair of remainders modulo m and n, gives a ring isomorphism. Thus, this “breaking up” of an integer
modulo mn into the pair modulo m and modulo n separately preserves both addition and multiplication.
This added information is very useful and will allow us to reduce certain problems to easier ones.
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Example 2.3.4. Find all x ∈ Z which simultaneously satisfy

x2 ≡ 4 (mod 6) and x3 ≡ 3 (mod 5)

Solution. Simple inspection shows that:

• x2 ≡ 4 (mod 6) if and only if either x ≡ 2 (mod 6) or x ≡ 4 (mod 6).

• x3 ≡ 3 (mod 5) if and only if x ≡ 2 (mod 5).

Therefore, an integer x ∈ Z satisfies our original two equations if and only if either:

• x ≡ 2 (mod 6) and x ≡ 2 (mod 5).

• x ≡ 4 (mod 6) and x ≡ 2 (mod 5).

The solution to the first (either by the following the constructive proof or by inspection) is x ≡ 2 (mod 30).
The solution to the second is x ≡ 22 (mod 30). Thus, x ∈ Z is a solution to our original congruences if and
only if either x ≡ 2 (mod 30) or x ≡ 22 (mod 30).

Theorem 2.3.5 (Chinese Remainder Theorem - Abstract Version with Two Ideals). Let R be a commutative
ring. Let I and J be ideals of R which are comaximal, i.e. I + J = R. We then have that IJ = I ∩ J and
the map φ : R→ R/I ×R/J defined by

φ(r) = (r + I, r + J)

is a surjective homomorphism with kernel IJ = I ∩ J . Therefore, by the First Isomorphism Theorem, we
have

R/IJ ∼= R/I ×R/J

Proof. Since I + J = R, we may fix x ∈ I and y ∈ J with x + y = 1. The map φ is clearly a ring
homomorphism, but we need to check that IJ = I ∩ J , that ker(φ) = I ∩ J , and that φ is surjective.

We always have IJ ⊆ I ∩ J for any ideals I and J . We need to show that I ∩ J ⊆ IJ . For any c ∈ I ∩ J ,
we have

c = c · 1 = c · (x+ y) = xc+ cy ∈ IJ

Therefore, I ∩ J ⊆ IJ , and hence I ∩ J = IJ .
We have

ker(φ) = {a ∈ R : φ(a) = (0 + I, 0 + J)}
= {a ∈ R : (a+ I, a+ J) = (0 + I, 0 + J)}
= {a ∈ R : a ∈ I and a ∈ J}
= I ∩ J

Finally, we must check that φ is surjective. Fix a, b ∈ R. We need to find r ∈ R with φ(r) = (a+I, b+I).
In other words, we must find r ∈ R such that r + I = a+ I and r + J = b+ J , i.e. r − a ∈ I and r − b ∈ J .
Let r = xb+ ya. We then have

r − a = xb+ ya− a
= xb+ (y − 1)a
= xb+ (−x)a
= (b− a)x
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so r − a ∈ I. We also have

r − b = xb+ ya− b
= (x− 1)b+ ya

= (−y)b+ ya

= (a− b)y

so r − b ∈ J .

Theorem 2.3.6 (Chinese Remainder Theorem - Elementary Version). Suppose that m1,m2, . . . ,m` ∈ Z are
pairwise relatively prime and a1, a2, . . . , a` ∈ Z. There exists x ∈ Z such that

x ≡ ai (mod mi)

for all i. Furthermore, if x0 ∈ Z is one solution to the above congruences, then an arbitrary x ∈ Z is also a
solution if and only if x ≡ x0 (mod n).

Proof. Let n = m1m2 · · ·mk. For any i, the numbers n
mi

and mi are relatively prime, so we may fix `i such
that n

mi
· `i ≡ 1 (mod mi). Let

x0 =
k∑
i=1

n

mi
· `iai

We check that x0 satisfies the above congruences.
Fix an arbitrary i. Since n

mi
· `i ≡ 1 (mod mi), we have n

mi
· `iai ≡ ai (mod mi). Now for any j 6= i, we

have that mi | n
mj

, so n
mj
· `jaj ≡ 0 (mod mi). Adding together each of the congruences, we conclude that

x0 ≡ ai (mod mi).
We now verify the last statement. Suppose that x0 is one solution. Suppose first that x ≡ x0 (mod n).

We then have that x ≡ x0 ≡ ai (mod mi) for all i, so x is also a solution. Suppose conversely that x ≡ ai
(mod mi) for all i. We then have that x ≡ x0 (mod mi) for all i, so mi | (x− x0) for all i. Since the mi are
pairwise relatively prime, it follows that n | (x− x0), hence x ≡ x0 (mod n).

Example 2.3.7. Find all integers x such that x3 ≡ 53 (mod 120).

Solution. Notice that 120 = 12 · 10 = 4 · 3 · 10 = 22 · 3 · 2 · 5 = 23 · 3 · 5. Notice that since 8, 3, and 5 are
relatively prime in pairs, we have that x3 ≡ 53 (mod 120) if and only if the following three congruences are
true:

x3 ≡ 53 (mod 8) x3 ≡ 53 (mod 3) x3 ≡ 53 (mod 5)

i.e. if and only if

x3 ≡ 5 (mod 8) x3 ≡ 2 (mod 3) x3 ≡ 3 (mod 5)

By inspection in these small cases, these congruences are equivalent to

x ≡ 5 (mod 8) x ≡ 2 (mod 3) x ≡ 2 (mod 5)

We have n = 8 · 3 · 5. Our first goal is to find integers `1, `2, and `3 such that

15`1 ≡ 1 (mod 8) 40`2 ≡ 1 (mod 3) 24`3 ≡ 1 (mod 5)

i.e. such that
7`1 ≡ 1 (mod 8) `2 ≡ 1 (mod 3) 4`3 ≡ 1 (mod 5)
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Thus, we may take `1 = 7, `2 = 1, and `3 = 4. The proof of the Chinese Remainder Theorem lets

x0 = 15 · 7 · 5 + 40 · 1 · 2 + 24 · 4 · 2 = 797

Thus, the complete solution is all x which satisfy x ≡ 797 (mod 120), i.e. all x which satisfy x ≡ 77
(mod 120).

Theorem 2.3.8 (Chinese Remainder Theorem - Algebraic Version). If m1,m2, . . . ,m` ∈ Z are pairwise
relatively prime, then

Z/(m1m2 · · ·m`)Z ∼= Z/m2Z× Z/m2Z× · · · × Z/m`Z

as rings via the map

φ(k +m1m2 · · ·m`Z) = (k +m1Z, k +m2Z, . . . , k +m`Z)

In particular, the map φ is surjective so for all ai ∈ Z, there exists a unique k ∈ {0, 1, 2, . . . ,m1m2 · · ·m`−1}
such that

k +miZ = ai +miZ

for all i.

Theorem 2.3.9 (Chinese Remainder Theorem - Abstract Version). Let R be a commutative ring. Let
I1, I2, . . . , I` be ideals of R which are comaximal in pairs, i.e. Ii + Ij = R whenever i 6= j. We then have
that I1I2 · · · I` = I1 ∩ I2 ∩ · · · ∩ I` and the map φ : R→ R/I1 ×R/I2 × · · · ×R/I` defined by

φ(r) = (r + I1, r + I2, . . . , r + I`)

is a surjective homomorphism with kernel I1I2 · · · I` = I1∩ I2∩ · · · ∩ I`. Therefore, by the First Isomorphism
Theorem, we have

R/I1I2 · · · I` ∼= R/I1 ×R/I2 × . . . R/I`

2.4 The Euler Function

Proposition 2.4.1. Let R and S be commutative rings. We then have that U(R × S) are precisely the
elements of the form (u,w) where u ∈ U(R) and w ∈ U(S). In other words, U(R× S) = U(R)× U(S).

Proof. Suppose first that (u,w) ∈ U(R× S). We may then fix (x, y) ∈ R× S with (u,w) · (x, y) = (1R, 1S).
This implies that (ux,wy) = (1R, 1S), so ux = 1R and wy = 1S . Thus, u ∈ U(R) and w ∈ U(S), so
(u,w) ∈ U(R)× U(S).

Suppose conversely that (u,w) ∈ U(R)× U(S). We then have that u ∈ U(R) and w ∈ U(S), so we may
fix x ∈ R and y ∈ S with ux = 1R and wy = 1S . We then have

(u,w) · (x, y) = (ux,wy) = (1R, 1S)

which is the multiplicative identity of R× S, so (u,w) ∈ U(R× S).

Proposition 2.4.2. Suppose that R and S are commutative rings and ψ : R→ S is a ring isomorphism. We
then have that u ∈ U(R) if and only if ψ(u) ∈ U(S). Furthermore, the function ψ|U(R) (that is, ψ restricted
to U(R)) is an isomorphism of abelian groups from U(R) onto U(S).
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Proof. The first statement is immediate from the general idea that isomorphisms preserve all algebraic
properties. However, here is a formal proof. Suppose that u ∈ U(R). We may then fix w ∈ R with uw = 1R.
Applying ψ we conclude that ψ(uw) = ψ(1R) = 1S , so ψ(u) · ψ(w) = 1S . Thus, ψ(u) ∈ U(S). Suppose
conversely that u ∈ R and ψ(u) ∈ U(S). Fix z ∈ S with ψ(u) · z = 1S . Since ψ is surjective, we may fix
w ∈ R with ψ(w) = z. We then have ψ(u) ·ψ(w) = 1S , so ψ(uw) = ψ(1R). Since ψ is injective, we conclude
that uw = 1, so u ∈ U(R).

We have shown that u ∈ U(R) if and only if ψ(u) ∈ U(S). Since ψ is surjective, we conclude that ψ|U(R)

maps U(R) bijectively onto U(S). Using the fact that ψ is a ring homomorphism, it follows immediately
that ψ|U(R) : U(R)→ U(S) preserves multiplication. Therefore, ψ|U(R) is an isomorphism of abelian groups
from U(R) onto U(S).

Corollary 2.4.3. If m,n ∈ Z are relatively prime, then

U(Z/(mn)Z) ∼= U(Z/mZ)× U(Z/nZ)

as (multiplicative) abelian groups.

Proof. This follows immediately from the Chinese Remainder Theorem and the previous Proposition.

Corollary 2.4.4. If m,n ∈ Z are relatively prime, then ϕ(mn) = ϕ(m) · ϕ(n).

Proof. If m,n ∈ Z are relatively prime, then

ϕ(mn) = |U(Z/(mn)Z)|
= |U(Z/mZ)× U(Z/nZ)|
= ϕ(m) · ϕ(n)

Proposition 2.4.5. If p ∈ N+ is prime and k ∈ N+, then ϕ(pk) = pk − pk−1 = pk−1(p− 1).

Proof. Fix a prime p ∈ N+ and k ∈ N+. We need to count the number of m ∈ N with 0 ≤ m ≤ pk − 1 such
that gcd(m, pk) = 1. Instead, we count the complement, i.e. the number of m ∈ N with 0 ≤ m ≤ pk− 1 such
that gcd(m, pk) > 1. Notice that the only positive divisors of pk are the numbers in the set {1, p, p2, . . . , pk},
so a number m fails to be relatively prime to pk if and only if p | m. Thus, we count the numbers m with
0 ≤ m ≤ pk − 1 such that p | m. These numbers are

0p, 1p, 2p, 3p, . . . , (pk−1 − 2)p, (pk−1 − 1)p

Thus, since we start counting with 0, there are pk−1 many numbers m with 0 ≤ m ≤ pk − 1 such that
gcd(m, pk) > 1. Since we counted the complement, and there are pk total many elements m with 0 ≤ m ≤
pk − 1, it follows that ϕ(pk) = pk − pk−1 = pk−1(p− 1).

Corollary 2.4.6. Let n ∈ N+ with n ≥ 2. Write the prime factorization of n as

n = pk11 p
k2
2 · · · p

k`
`

where the pi are distinct and each ki ∈ N+. We then have

ϕ(n) =
∏̀
i=1

(pkii − p
ki−1
i )

=
∏̀
i=1

pki−1
i (pi − 1)

= n ·
∏̀
i=1

(
1− 1

pi

)
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Proof. This follows immediately from the two previous results.

Before moving on to another important result about ϕ, we recall a few results from group theory.

Proposition 2.4.7. Let G be a group and let a ∈ G. Suppose that |a| = n ∈ N+. For any k ∈ Z, we have
ak = e if and only if n | k.

Proof. Let |a| = n ∈ Z. We then have in particular that an = e. Suppose first that k ∈ Z is such that n | k.
Fix m ∈ Z with k = nm We then have

ak = anm = (an)m = em = e

so ak = e. Suppose conversely that k ∈ Z and that ak = e. Since n > 0, we may write k = qn + r where
0 ≤ r < n. We then have

e = ak

= aqn+r

= aqnar

= (an)qar

= eqar

= ar

Now by definition we know that n is the least positive power of a which gives the identity. Therefore, since
0 ≤ r < n and ar = e, we must have that r = 0. It follows that k = qn so n | k.

Proposition 2.4.8. Let G be a group and let a ∈ G. Suppose that |a| = n. For any k ∈ Z, we have

|ak| = n

gcd(n, k)

Proof. Fix k ∈ Z and let d = gcd(n, k). The order of ak is the least m > 0 such that (ak)m = e, i.e. the least
m such that n | km. Notice that n

d certainly works as such an m because

k · n
d

= n · k
d

and k
d ∈ Z because d | k. We now need to show that n

d is the least positive value of m that works. Suppose
then that m > 0 and n | km. Fix ` ∈ Z such that n` = km. Dividing through by d gives

n

d
· ` =

k

d
·m

hence
n

d
| k
d
·m

Since gcd(nd ,
k
d ) = 1 (this is easy to verify because d = gcd(n, k)), it follows that n

d | m. Since n
d and m are

each positive, we conclude that n
d ≤ m. Therefore, n

d is the least m such that n | km, and so we conclude
that |ak| = n

d .

Corollary 2.4.9. If G is a cyclic group of order n, then G has exactly ϕ(n) many elements of order n.

Proof. Since G is cyclic, we may fix a generator c ∈ G, i.e. an element with |c| = n. We then have that
G = {c0, c1, c2, . . . , cn−1} and furthermore if 0 ≤ i < j < n, then ci 6= cj . The previous result implies that
given k ∈ {0, 1, 2, . . . , n−1}, we have |ck| = n if and only if gcd(k, n) = 1. Therefore, the number of elements
of G of order n equals ϕ(n).
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Proposition 2.4.10. Let G be a cyclic group of order n and let d | n. We then have that G has exactly
ϕ(d) many elements of order d.

Proof. Fix a generator c ∈ G. Notice that |cn/d| = d (either directly or from the above result), so G has an
element of order d. Let H = 〈cn/d〉 and notice that H is a cyclic group of order d. Therefore, H has exactly
ϕ(d) many elements of order d from above. To complete the proof, we need only show that every element of
G with order d must be an element of H.

Suppose then that g ∈ G is an element with |g| = d. Since c is a generator of G, we may fix k ∈ Z with
g = ck. Since |ck| = |g| = d, we must have that

n

gcd(k, n)
= d

and thus gcd(k, n) = n
d . It follows that n

d | k and hence g = ck ∈ 〈cn/d〉 = H. Therefore, every element of
order d is an element of H. This completes the proof.

Theorem 2.4.11. For any n ∈ N+, we have

n =
∑
d|n

ϕ(d)

where the summation is over all positive divisors d of n.

Proof. Let n ∈ N+. Fix any cyclic group of order G. We know that every element of G has order some
divisor of n, and furthermore we know that if d | n, then G has exactly ϕ(d) many elements of order d.
Therefore, the sum on the right-hand side simply counts the number of elements of G by breaking them up
into the various possible orders. Since |G| = n, the result follows.

Notice that the above proposition gives a recursive way to calculate ϕ(n) because

ϕ(n) = n−
∑
d|n
d<n

ϕ(d)

2.5 Wilson’s Theorem

Proposition 2.5.1. Let G be a finite abelian group with elements a1, a2, · · · , an. Let b1, b2, . . . , bk be the
elements of G which satisfy x2 = e (i.e. the elements which are their own inverses). We then have

n∏
i=1

ai =
k∏
i=1

bi

Proof. Let ai ∈ G and suppose that a−1
i = aj for some j 6= i. In the product of all elements of G, we can

pair off ai with aj and have these elements cancel each other (notice that a−1
j = ai so aj gets paired with ai

as well). Thus, all elements which are not their own inverses disappear from the product, and the product
simplifies into the product of only those elements which are their own inverses.

Proposition 2.5.2. Let p be prime. The elements of U(Z/pZ) which are their own inverse are exactly 1
and −1 = p− 1. Furthermore, if p is an odd prime, then 1 6= −1.

Proof. First notice that 1 · 1 = 1 · 1 = 1 and −1 · −1 = (−1) · (−1) = 1, so both of these elements are their
own inverses. Furthermore, if 1 = −1, then p | 2, so p = 2.

Suppose now that k ∈ U(Z/pZ) is its own inverse. We then have that k2 ≡ 1 (mod p), so p | (k2 − 1)
and thus p | (k− 1)(k+ 1). Since p is prime, this implies that either p | (k− 1) or p | (k+ 1), i.e. either k ≡ 1
(mod p) or k ≡ −1 (mod p). Thus, either k = 1 or k = −1.
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Theorem 2.5.3 (Wilson’s Theorem). If p is prime, then (p− 1)! ≡ −1 (mod p).

Proof 1. Notice that in the ring Z/pZ, we have

(p− 1)! = 1 · 2 · 3 · · · (p− 1) = 1 · 2 · 3 · · · (p− 1)

Thus, (p− 1)! is the product of all the elements in the abelian group U(Z/pZ). By the above two propositions,
this equals

1 · p− 1 = 1 · −1 = −1

Therefore, (p− 1)! ≡ −1 (mod p).

Proof 2. The result is trivial if p = 2, so assume that p is odd. Work over the field F = Z/pZ. Consider
the polynomial f(x) = xp−1 − 1 in F [x]. Notice that every element of F − {0} is a root of this polynomial
by Fermat’s Little Theorem. Thus, for each a ∈ F − {0}, the irreducible polynomial x− a divides xp−1 − 1
in F [x]. Now each polynomial of the form x− a is irreducible in F [x], so as F [x] is UFD, we conclude that
some associate of it must appear in any factorization of xp−1 − 1 into irreducibles. Therefore, we can write

xp−1 − 1 = (x− 1)(x− 2) · · · (x− (p− 1)) · f(x)

for some f(x) ∈ F [x]. Comparing degrees on the left and right, we must have deg(f(x)) = 0, so f(x) is a
constant. Comparing leading terms on both sides, it follows that f(x) = 1. Therefore, we have

xp−1 − 1 = (x− 1)(x− 2) · · · (x− (p− 1))

By either plugging in 0 or examining the constant terms, we conclude that

−1 = −1 · −2 · −3 · · · (−(p− 1))

= (−1)p−1 · 1 · 2 · 3 · · · (p− 1)

= (−1)p−1 · (p− 1)!

= (p− 1)! (since p is odd)

Therefore, (p− 1)! ≡ −1 (mod p).

2.6 U(Z/pZ) is Cyclic

One of primary goals at this point is to understand the structure of the multiplicative group U(Z/nZ).
Using the Chinese Remainder Theorem, it suffices to understand the structure of U(Z/pkZ) for primes p.
An example to keep in mind throughout this section is U(Z/8Z) = {1, 3, 5, 7}. A simple calculation shows
that a2 = 1 for all a ∈ U(Z/8Z). Since this group has order 4, it is not cyclic. In fact, it turns out that
U(Z/8Z) is isomorphic to the direct product of two copies of the cyclic group of order 2.

As we will see, for odd primes p, the group U(Z/pkZ) is cyclic. In this section, we prove the result when
k = 1, i.e. we prove that U(Z/pZ) is cyclic for every prime p. In fact, we will prove the following stronger
result.

Theorem 2.6.1. Suppose that F is a field, and suppose that G is a finite subgroup of the multiplicative
group U(F ). We then have that G is cyclic.

From this theorem, we obtain the corollary that is important to us.

Corollary 2.6.2. The group U(Z/pZ) is cyclic for every prime p.
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Proof. Immediate from the above theorem because Z/pZ is a field when p is prime.

We give two proofs of this fact. The first uses properties of ϕ established above, while the second is more
directly algebraic. The fundamental idea fueling both proofs is the fact that a polynomial of degree n has
at most n roots when working over a field. Applying this to polynomials of the form xd − 1 allows one to
conclude that a finite subgroup G of U(F ) can not have too many elements of small order. The proofs then
use this idea to argue for the existence of an element of order n.

Proof 1 of Theorem 2.6.1. Let n = |G|. For each positive d | n, let f(d) be the number of elements of G of
order d. Fix a positive d | n, and suppose that f(d) 6= 0. We may then fix an element g ∈ G of order d. Let
H = 〈g〉 and notice that |H| = d. By Lagrange’s Theorem, we have hd = 1 for all h ∈ H, so every element
of H is a root of the polynomial xd− 1 ∈ F [x]. Now F is a field, so we know that xd− 1 has at most d roots
in F , and so we have found all of them. Now every element of order d in G is a root of this polynomial, so
every element of G of order d must be in H. From above, we know that H has ϕ(d) many elements of order
d. Thus, for all positive d | n, we know that either f(d) = 0 or f(d) = ϕ(d). It follows that f(d) ≤ ϕ(d) for
all positive d | n.

We know use this result to finish the proof. Since every element of G has order some positive divisor of
n by Lagrange’s Theorem, we have

n =
∑
d|n

f(d)

≤
∑
d|n

ϕ(d) (from above)

= n (from above)

This implies that we must have f(d) = ϕ(d) for all positive d | n. In particular, f(n) = ϕ(n) > 0, so G has
an element of order n. Therefore, G is cyclic.

Lemma 2.6.3. Let G be a finite abelian group and let g, h ∈ G with |g| = m, |h| = n, and gcd(m,n) = 1.
We then have that |gh| = mn.

Proof. We have

(gh)mn = gmnhmn (since G is abelian)
= (gm)n(hn)m

= enem

= e

so |gh| ≤ mn. Suppose that k ∈ N+ is such that (gh)k = e. We then have gkhk = e. Raising each side to
the mth power gives hkm = e, and hence n | km. Since gcd(m,n) = 1, it follows that n | k. Similarly, if we
raise each side to the nth power we get gkn = e, so m | kn. Since gcd(m,n) = 1, it follows that m | k. Since
m | k and n | k, and gcd(m,n) = 1, it follows that mn | k, and hence k ≥ mn. Therefore, |gh| = mn.

Lemma 2.6.4. Let G be a finite abelian group. Let ` be the smallest number such that a` = e for all a ∈ G
(i.e. ` is the least common multiple of the orders of all the elements of G). Then G has an element of order
`.

Proof. Write the prime factorization of ` as

` = pα1
1 pα2

2 · · · p
αk
k
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where the pi are distinct primes and each αi ≥ 1. Since ` is the least common multiple of the orders of all
of the elements of G, it must be the case that pαii divides the order of some element of G for each i. Thus,
for each i, we may fix an element gi ∈ G such that |gi| = pαii . Let

b = g1g2 · · · gk

Using the lemma, we conclude that |b| = pα1
1 pα2

2 · · · p
αk
k = `.

With these lemmas in hand, we are not ready to give our second proof of the above theorem.

Proof 2 of Theorem 2.6.1. Suppose that |G| = n. Let ` be the least common multiple of the orders of all of
the elements of G. Notice that for all a ∈ G, we have that |a| divides n be Lagrange’s Theorem. Therefore,
n is a common multiple of the orders of all the elements of G, so ` ≤ n. We also have that x`− 1 has n roots
in G, so we must have that n ≤ `. Putting these together, we conclude that ` = n. By the lemma, G has an
element of order ` = n, so G is cyclic.

Definition 2.6.5. Let n ∈ N+. An integer a ∈ Z is called a primitive root modulo n if a ∈ Z/nZ generates
U(Z/nZ).

Corollary 2.6.6. For every prime p, the group U(Z/pZ) is cyclic, so there exists a primitive root modulo
p.

Example 2.6.7. The number 2 is primitive root modulo 3, 5, 11, and 13, but not modulo 7. The number 3
is a primitive root modulo 7.

2.7 Prime Powers

Before jumping into the general theory, we prove two important lemmas.

Lemma 2.7.1. Let p be prime and let i ∈ N with 1 ≤ i ≤ p− 1. We then have that p |
(
p
i

)
.

Proof. By definition, we have (
p

i

)
=

p!
i! · (p− i)!

so

i! · (p− 1)! ·
(
p

i

)
= p!

Notice that ordp(i!) = 0 = ordp((p − 1)!) since p does not divide any positive natural number less than p.
Also, we have ordp(p!) = 1. Applying ordp to both sides of the above equation then gives

ordp

((
p

i

))
= 1

Therefore, p |
(
p
i

)
.

Lemma 2.7.2. Suppose that p is prime and that k ∈ N+. If

a ≡ b (mod pk)

then
ap ≡ bp (mod pk+1)
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Proof. We have pk | (a− b), so we many fix m ∈ Z with mpk = a− b. We then have that a = b+mpk, hence

ap = (b+mpk)p

= bp +
(
p

1

)
bp−1(mpk)1 +

p∑
i=2

(
p

i

)
bp−i(mpk)i

= bp + bp−1mpk+1 +
p∑
i=2

(
p

i

)
bp−imipik

= bp + bp−1mpk+1 + p2k ·
p∑
i=2

(
p

i

)
bp−imip(i−2)k

Since 2k ≥ k + 1 (as k ≥ 1), it follows that ap − bp is divisible by pk+1, i.e. that ap ≡ bp (mod pk+1).

2.7.1 Powers of 2

Proposition 2.7.3. Suppose that k ≥ 3. For all a ∈ Z with a odd, we have

a2k−2
≡ 1 (mod 2k)

Proof. We prove the result by induction on k. For k = 3, we have 23 = 8, and a straightforward calculation
shows that each of 1, 3, 5, and 7 satisfy a2 = 1 in U(Z/8Z).

Suppose that the result is true for a fixed k ≥ 3. We prove it for k + 1. Let a ∈ Z with a odd. By
induction, we have

a2k−2
≡ 1 (mod 2k)

By Lemma 2.7.2, we conclude that
(a2k−2

)2 ≡ 12 (mod 2k+1)

which says that
a2k−1

≡ 1 (mod 2k+1)

The result follows by induction.

Corollary 2.7.4. For every k ≥ 3, the group U(Z/2kZ) is not cyclic (i.e. there is no primitive root modulo
2k whenever k ≥ 3).

Proof. Fix k ≥ 3. We have that
|U(Z/2kZ)| = ϕ(2k) = 2k−1

Since a number is relatively prime to 2k exactly when it is odd, the previous proposition tells us that every
element of the group U(Z/2kZ) has order at most 2k−2. The result follows.

Proposition 2.7.5. For every k ≥ 3, the element 5 ∈ U(Z/2kZ) has order 2k−2.

Proof. We know that |U(Z/2kZ)| = ϕ(2k) = 2k−1. Since U(Z/2kZ) is not cyclic, we know that the order
of 5 is not 2k−1. Since the order of 5 must divide 2k−1 by Lagrange’s Theorem, it must equal 2` for some
` ≤ k − 2. Now 2` | 2k−3 whenever ` ≤ k − 3, so to show that the order of 5 is 2k−2 it suffices to show that

52k−3
6≡ 1 (mod 2k)

We prove the stronger statement that

52k−3
≡ 2k−1 + 1 (mod 2k)
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by induction on k ≥ 3. When k = 3, this statement reads

5 ≡ 4 + 1 (mod 8)

which is trivially true. Suppose that the result is true for some fixed k ≥ 3. We prove it for k + 1. The
inductive hypothesis tells us that

52k−3
≡ 2k−1 + 1 (mod 2k)

By Lemma 2.7.2, we conclude that

(52k−3
)2 ≡ (2k−1 + 1)2 (mod 2k+1)

which says that
52k−2

≡ 22k−2 + 2 · 2k−1 + 1 (mod 2k+1)

Now 2k − 2 ≥ k + 1 because k ≥ 3, so 22k−2 ≡ 0 (mod 2k+1). Since 2 · 2k−1 = 2k, we see that

52k−2
≡ 2k + 1 (mod 2k+1)

The result follows by induction.

Proposition 2.7.6. Suppose that k ≥ 3. In the group U(Z/2kZ), we have −1 /∈ 〈5〉.

Proof. We have 5 ≡ 1 (mod 4), and hence 5` ≡ 1 (mod 4) for all ` ≥ 1. Therefore, 5` 6≡ −1 (mod 4) for
each ` ≥ 1. Since 4 | 2k (as k ≥ 3), it follows that 5` 6≡ −1 (mod 2k) for each ` ≥ 1. Therefore, −1 /∈ 〈5〉.

Corollary 2.7.7. The group U(Z/2Z) is the trivial group, the group U(Z/4Z) is cyclic of order 2, and for
all k ≥ 3, the group U(Z/2kZ) is the direct product of a cyclic group of order 2k−2 and a cyclic group of
order 2.

Proof. The statements for U(Z/2Z) and U(Z/4Z) are trivial. Fix k ≥ 3 and consider the group U(Z/2kZ).
Let H = 〈5〉 and let K = 〈−1〉. We then have that |H| = 2k−2, |K| = 2, and H ∩K = {1}. Now HK is a
subgroup of U(Z/2kZ) because they are normal (as the group is abelian), so since H is a proper subgroup
of HK and |U(Z/2kZ)| = 2k−1 = 2 · |H|, we conclude that HK = U(Z/2kZ). It follows that G is internal
direct product of H and K, and therefore U(Z/2kZ) ∼= H ×K.

2.7.2 Powers of Odd Primes

Fix an odd prime p. We first explore U(Z/p2Z) in the hopes of finding a primitive root. Fix a primitive root
g modulo p. Now we want to determine whether g is a primitive root modulo p2. Let n be the order of g
viewed as an element of Z/p2Z. We then have that

gn ≡ 1 (mod p2)

so since p | p2 we know that
gn ≡ 1 (mod p)

Now the order of g when viewed as an element of Z/pZ equals p − 1, so we must have that p − 1 | n. We
also know that n divides ϕ(p2) = p(p − 1) by Lagrange’s Theorem, so the only possibilities are that either
n = p− 1 or n = p(p− 1). Of course, if n = p(p− 1), then we are happy because g will also be a primitive
root modulo p2. The problem is that this is not always guaranteed. For example, −1 is a primitive modulo
3 but is not a primitive root modulo 9. Also, 7 is a primitive root modulo 5 but is not a primitive root
modulo 25 (since 74 ≡ 1 (mod 25)). For a more interesting example, 14 is a primitive root modulo 29, but

1428 ≡ 1 (mod 841)
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so 14 is not a primitive root modulo 292 = 841.
What do we do when we end up in the unfortunate case where n = p− 1? We then have that

gp−1 ≡ 1 (mod p2)

Now g + p ≡ g (mod p), so g + p is also a primitive root modulo p. Notice that

(g + p)p−1 = gp−1 +
(
p− 1

1

)
gp−2p+

p−1∑
i=2

(
p− 1
i

)
gp−1−ipi

= gp−1 + gp−2p(p− 1) +
p−1∑
i=2

(
p− 1
i

)
gp−1−ipi

and thus

(g + p)p−1 ≡ gp−1 + gp−2p(p− 1) (mod p2)

≡ 1 + gp−2p(p− 1) (mod p2)

Now p - g and p - (p− 1), so as p is prime we conclude that p - gp−2(p− 1). It follows that p2 - gp−2p(p− 1),
and so

(g + p)p−1 6≡ 1 (mod p2)

Therefore, g + p is a primitive root modulo p2.

Theorem 2.7.8. If p is an odd prime, then U(Z/p2Z) is cyclic.

Proof. Fix a primitive root g modulo p. If gp−1 6≡ 1 (mod p2), then the above argument shows that g is
a primitive root modulo p2. Suppose then that gp−1 ≡ 1 (mod p2). In this case, the number g + p is a
primitive root modulo p, and from above we have

(g + p)p−1 6≡ 1 (mod p2)

Therefore, by the above argument applied to g+p instead of g itself, we see that g is a primitive root modulo
p2.

We now aim to push this result to higher powers of an odd prime p. Fix an odd prime p and an integer
k ≥ 3. Suppose that g is a primitive root modulo p2. We want to determine whether g is a primitive root
modulo pk. Let n be the order of g viewed as an element of Z/pkZ. Now

|U(Z/pkZ)| = ϕ(pk) = pk−1(p− 1)

so our hope is to show that n = pk−1(p− 1). We have

gn ≡ 1 (mod pk)

so since p | pk we know that
gn ≡ 1 (mod p)

Now the order of g when viewed as an element of Z/pZ equals p − 1 (because a primitive root modulo p2

is automatically a primitive root modulo p), so we must have that p − 1 | n. By Lagrange’s Theorem, we
also know that n | ϕ(pk) = pk−1(p − 1). Therefore, we must have n = pm(p − 1) for some m ∈ N with
0 ≤ m ≤ k − 1. Our goal is to show that m = k − 1.

Since gp−1 ≡ 1 (mod p), we may write gp−1 = 1 + ap for some a ∈ Z. Now if p | a, then we would have

gp−1 ≡ 1 (mod p2)

contrary to the fact that g is a primitive root modulo p2. It follows that p - a. We now prove the following.
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Proposition 2.7.9. For all ` ∈ N, we have

gp
`(p−1) ≡ 1 + ap`+1 (mod p`+2)

Proof. We prove the result by induction. If ` = 0 this is trivial because gp−1 = 1 + ap. Suppose that we
know the result for some fixed ` ∈ N, i.e. we know that

gp
`(p−1) ≡ 1 + ap`+1 (mod p`+2)

Using Lemma 2.7.2, we conclude that

gp
`+1(p−1) ≡ (1 + ap`+1)p (mod p`+3)

By the Binomial Theorem we know that

(1 + ap`+1)p = 1 +
(
p

1

)
ap`+1 + (

p−1∑
i=2

(
p

i

)
(ap`+1)i) +

(
p

p

)
(ap`+1)p

= 1 + ap`+2 + (
p−1∑
i=2

(
p

i

)
aipi(`+1)) + appp(`+1)

Now p ≥ 3, so
p(`+ 1) ≥ 3(`+ 1) = 3`+ 3 ≥ `+ 3

so p`+3 divides the last term in the above sum. For any i with 2 ≤ i ≤ p− 1, we have

i(`+ 1) ≥ 2(`+ 1) = 2`+ 2 ≥ `+ 2

Since for any i with 2 ≤ i ≤ p − 1, we know that p |
(
p
i

)
, it follows that p`+3 divides every term in the

summation. Therefore,
(1 + ap`+1)p ≡ 1 + ap`+2 (mod p`+3)

Putting this together with the above, we conclude that

gp
`+1(p−1) ≡ 1 + ap`+2 (mod p`+3)

This completes the induction.

Theorem 2.7.10. Suppose that p is an odd prime. If g is a primitive root modulo p2, then g is a primitive
root modulo pk for all k ≥ 2.

Proof. Let g be a primitive root modulo p2 and let k ≥ 2. Let n be the order of g in U(Z/pkZ). Following
the above arguments, we know that n = pm(p − 1) for some m ∈ N with 0 ≤ m ≤ k − 1. We also know
that we may write gp−1 = 1 + ap for some a ∈ Z with p - a. Now suppose that m ≤ k − 2, We then have
pm(p− 1) | pk−2(p− 1) and hence gp

k−2(p−1) ≡ 1 (mod pk). However, the previous proposition tells us that

gp
k−2(p−1) ≡ 1 + apk−1 (mod pk)

This would imply that 1 + apk−1 ≡ 1 (mod pk), contradicting the fact that p - a. Therefore, we must have
m = k− 1, and thus n = pk−1(p− 1). It follows that the order of g in U(Z/pkZ) is ϕ(pk), so g is a primitive
root modulo pk.
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Corollary 2.7.11. If p is an odd prime, then U(Z/pkZ) is cyclic for all k ∈ N.

Suppose now that n ≥ 2, and write the prime factorization of n as

n = pk11 p
k2
2 · · · p

k`
`

By the Chinese Remainder Theorem, we know that

U(Z/nZ) ∼= U(Z/pk11 Z)× U(Z/pk21 Z)× · · · × U(Z/pk`` Z)

Since we have classified all of the groups in the direct product on the right, we can use this to understand
the structure of any U(Z/nZ).

Theorem 2.7.12. Let n ≥ 2. We then have that U(Z/nZ) is cyclic if and only if either n = 2, n = 4,
n = pk for some odd prime p, or n = 2pk for some odd prime p.

Proof. We know that U(Z/nZ) is cyclic in each of the first three cases. If n = 2pk for some odd prime p,
then

U(Z/nZ) ∼= U(Z/2Z)× U(Z/pkZ) ∼= U(Z/pkZ)

because U(Z/2Z) is the trivial group, so U(Z/nZ) is cyclic.
Suppose conversely that n is not one of the above values. If n = 2k for some k ≥ 3, then we’ve shown above

that U(Z/nZ) is not cyclic. Otherwise, we can write n = m1m2 where gcd(m1,m2) = 1 and m1,m2 ≥ 3. In
this case, both ϕ(m1) and ϕ(m2) are even by the homework and

U(Z/nZ) ∼= U(Z/m1Z)× U(Z/m2Z)

Since each of the groups on the right have even order, they each have elements of order 2. Thus, U(Z/nZ)
has at least 2 elements of order 2, but a cyclic group has only ϕ(2) = 1 many elements of order 2. Therefore,
U(Z/nZ) is not cyclic.

2.8 When −1 is a Square Modulo p

Theorem 2.8.1. Let p be an odd prime. There exists an a ∈ Z with a2 ≡ −1 (mod p) if and only if p ≡ 1
(mod 4).

Algebraic Proof. Suppose first that there exists an a ∈ Z with a2 ≡ −1 (mod p). Working in Z/pZ, we then
have that a 6= 0 and a 6= 1 (since 02 = 0 6= −1 and −12 = 1 6= −1 as p ≥ 3). In particular, a ∈ U(Z/pZ) and
a is not the identity of this group. We also have

a4 = (a2)2 = (−1)2 = 1

Thus, the order of a ∈ Z/pZ is a divisor of 4. We know that this order is not 1 (since a 6= 1) and it is also
not 2 because a2 = −1 6= 1. Therefore, the order of a ∈ U(Z/pZ) is 4. By Lagrange’s Theorem, it follows
that 4 | ϕ(p), which is to say that 4 | p− 1. Therefore, p ≡ 1 (mod 4).

Suppose conversely that p ≡ 1 (mod 4). We then have that 4 | p− 1, so 4 | |U(Z/pZ)|. Recall that if G
is a cyclic group of order n and d is a positive divisor of n, then G has an element of order d. Since U(Z/pZ)
is a cyclic group and 4 | |U(Z/pZ)|, we may fix a ∈ Z with p - a such that |a| = 4. We then have a2 6= 1
and (a2)2 = a4 = 1. Now the only solutions to x2 = 1 in Z/pZ are 1 and −1, so we conclude that a2 = −1.
Therefore, a2 ≡ −1 (mod p).
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Elementary Proof. Suppose first that there exists an a ∈ Z with a2 ≡ −1 (mod p). Notice that p - a because
otherwise a2 ≡ 0 6≡ −1 (mod p). By Fermat’s Little Theorem, we have ap−1 ≡ 1 (mod p). Thus

1 ≡ ap−1 ≡ (a2)
p−1
2 ≡ (−1)

p−1
2 (mod p)

Since p ≥ 3, we have 1 6≡ −1 (mod 3) and thus p−1
2 must be even. It follows that 4 | (p− 1), i.e. that p ≡ 1

(mod 4).
Suppose conversely that p ≡ 1 (mod 4). We then have that 4 | (p− 1), so p−1

2 is even. Let ` = p−1
2 . By

Wilson’s Theorem we have
(p− 1)! ≡ −1 (mod p)

Now −k ≡ p− k (mod )p for all k, so in the product (p− 1)! we can replace the latter half of the elements
in the product (p− 1)! by the first ` negative numbers, i.e. the numbers in the list

`+ 1, `+ 2, . . . , p− 2, p− 1

are each equivalent modulo p to exactly one number in the following list:

−`,−(`− 1), . . . ,−2,−1

Therefore, working modulo p, we have

−1 ≡ (p− 1)!
≡ 1 · 2 · · · (`− 1) · ` · (`+ 1) · (`+ 2) · · · (p− 2) · (p− 1)
≡ 1 · 2 · · · (`− 1) · ` · (−`) · (−(`− 1)) · · · (−2) · (−1)

≡ (−1)` · 1 · 2 · · · (`− 1) · ` · ` · (`− 1) · · · 2 · 1
≡ (−1)` · (`!)2

≡ (`!)2

where the last line follows because ` = p−1
2 is even. Therefore, there exists a ∈ Z with a2 ≡ −1 (mod p),

namely a = `! = (p−1
2 )!.

(A slightly cleaner way to write the above argument is simply to notice that you can list the elements of
U(Z/pZ) as

−`,−(`− 1) . . . ,−2,−1, 1, 2, `− 1, `

rather the usual way as 1, 2, . . . , p− 1, and then apply the above two propositions.)



36 CHAPTER 2. ELEMENTARY NUMBER THEORY FROM AN ALGEBRAIC VIEWPOINT



Chapter 3

Abstracting the Integers

3.1 Euclidean Domains

Both Z and F [x] (for F a field) have “division with remainder” properties. In both of these rings, the ability
to divide and always get something “smaller” allows one to prove many powerful things. In particular, this
property allowed us to prove the existence of greatest common divisors which eventually lead to unique
factorization. With such power, we will define a class of integral domains based on the idea of allowing
“division with remainder” so that our results will be as general as possible.

Definition 3.1.1. Let R be an integral domain. A function N : R\{0} → N is called a Euclidean function
on R if for all a, b ∈ R with b 6= 0, there exist q, r ∈ R such that

a = qb+ r

and either r = 0 or N(r) < N(b).

Definition 3.1.2. An integral domain R is a Euclidean domain if there exists a Euclidean function on R.

Example 3.1.3. In algebra, you established the following.

• The function N : Z\{0} → N defined by N(a) = |a| is a Euclidean function on Z, so Z is a Euclidean
domain.

• Let F be a field. The function N : F [x]\{0} → N defined by N(f(x)) = deg(f(x)) is a Euclidean
function on F [x], so F [x] is a Euclidean domain.

Notice that we do not require the uniqueness of q and r in our definition of a Euclidean function.
Although it was certainly a nice perk to have some aspect of uniqueness in Z and F [x], it turns out to be
be unnecessary for the theoretical results of interest about Euclidean domains. Furthermore, many natural
Euclidean functions on integral domains for which uniqueness fails, and we want to be as general as possible.

The name Euclidean domain comes from the fact that any such integral domain supports the ability to
find greatest common divisors via the Euclidean algorithm. In particular, the notion of “size” given by a
Euclidean function N : R→ N allows us to use induction to prove the existence of greatest common divisors.
We begin with the following generalization of a simple result we proved about Z which works in any integral
domain (even any commutative ring).

Proposition 3.1.4. Let R be an integral domain. Let a, b, q, r ∈ R with a = qb+ r. For any d ∈ R, we have
that d is a common divisor of a and b if and only if d is a common divisor of b and r, i.e.

{d ∈ R : d is a common divisor of a and b} = {d ∈ R : d is a common divisor of b and r}

37
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Proof. Suppose first that d is a common divisor of b and r. Since d | b, d | r, and a = qb + r = bq + r1, it
follows that d | a.

Conversely, suppose that d is a common divisor of a and b. Since d | a, d | b, and r = a−qb = a1+ b(−q),
it follows that d | r.

Theorem 3.1.5. Let R be a Euclidean domain. Every pair of elements a, b ∈ R has a greatest common
divisor.

Proof. Since R is a Euclidean domain, we may fix a Euclidean function N : R\{0} → N. We use (strong)
induction on N(b) ∈ N to prove the result. We begin by noting that if b = 0, then the set of common divisors
of a and b equals the set of divisors of a (because every integer divides 0), so a satisfies the requirement of a
greatest common divisor. Suppose then that b ∈ R is nonzero and we know the result for all pairs x, y ∈ R
with either y = 0 or N(y) < N(b). Fix q, r ∈ R with a = qb + r and either r = 0 or N(r) < N(b). By
(strong) induction, we know that b and r have a greatest common divisor d. By the Proposition 3.1.4, the
set of common divisors of a and b equals the set of common divisors of b and r. It follows that d is a greatest
common divisor of a and b.

As an example, consider working in the ring Q[x] and trying to find a greatest common divisor of the
following two polynomials:

f(x) = x5 + 3x3 + 2x2 + 6 g(x) = x4 − x3 + 4x2 − 3x+ 3

We apply the Euclidean Algorithm as follows (we suppress the computations of the long divisions):

x5 + 3x3 + 2x2 + 6 = (x+ 1)(x4 − x3 + 4x2 − 3x+ 3) + (x2 + 3)

x4 − x3 + 4x2 − 3x+ 3 = (x2 − x+ 1)(x2 + 3) + 0

Thus, the set of common of f(x) and g(x) equals the set of common divisors of x2 +3 and 0, which is just the
set of divisors of x2 + 3. Therefore, x2 + 3 is a greatest common divisor of f(x) and g(x). Now this is not the
only greatest common divisor because we know that any associate of x2 + 3 will also be a greatest common
divisor of f(x) and g(x). The units in Q[x] are the nonzero constants, so other greatest common divisors
are 2x2 + 6, 5

6x
2 + 5

2 , etc. We would like to have a canonical choice for which to pick, akin to choosing the
nonnegative value when working in Z.

Definition 3.1.6. Let F be a field. A monic polynomial in F [x] is a nonzero polynomial whose leading term
is 1.

Notice that every nonzero polynomial in F [x] is an associate with a unique monic polynomial (if the
leading term is a 6= 0, just multiply by a−1 to get a monic associate, and notice that this is the only way to
multiply by a nonzero constant to make it monic). By restricting to monic polynomials, we get a canonical
choice for a greatest common divisor.

Definition 3.1.7. Let F be a field and let f(x), g(x) ∈ F [x] be polynomials. If at least one of f(x) and g(x)
is nonzero, we define gcd(f(x), g(x)) to be the unique monic polynomial which is a greatest common divisor
of f(x) and g(x). Notice that if both f(x) and g(x) are the zero polynomial, then 0 is the only greatest
common divisor of f(x) and g(x), so we define gcd(f(x), g(x)) = 0.

Now x2 + 3 is monic, so from the above computations, we have

gcd(x5 + 3x3 + 2x2 + 6, x4 − x3 + 4x2 − 3x+ 3) = x2 + 3

We now provide another incredibly important an example by showing that the Gaussian Integers Z[i] are
also a Euclidean domain.
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Definition 3.1.8. Working in the field C, we define the following.

• Q(i) = {q + ri : q, r ∈ Q}

• Z[i] = {a+ bi : a, b ∈ Z}

Notice that Q(i) is a subfield of C and Z[i] is a subring of Q(i) and thus of C. The ring Z[i] is called the
Gaussian Integers.

To see that Q(i) is a field, suppose that α ∈ Q(i) is nonzero and write α = q + ri. We then have that
either q 6= 0 or r 6= 0, so

1
α

=
1

q + ri

=
1

q + ri
· q − ri
q − ri

=
q − ri
q2 + r2

=
q

q2 + r2
+

−r
q2 + r2

· i

Since both q
q2+r2 and −r

q2+r2 are elements of Q, it follows that 1
α ∈ Q(i).

Definition 3.1.9. We define a function N : Q(i) → Q by letting N(q + ri) = q2 + r2. The function N is
called the norm on the field Q(i).

Proposition 3.1.10. For the function N(q + ri) = q2 + r2 defined on Q(i), we have

1. N(α) ≥ 0 for all α ∈ Q(i).

2. N(α) = 0 if and only if α = 0.

3. N(q) = q2 for all q ∈ Q.

4. N(α) ∈ N for all α ∈ Z[i].

5. N(αβ) = N(α) ·N(β) for all α, β ∈ Q(i).

Proof. The first four are all immediate from the definition. Suppose that α, β ∈ Q(i) and write α = q + ri
and β = s+ ti. We have

N(αβ) = N((q + ri)(s+ ti))
= N(qs+ rsi+ qti− rt)
= N((qs− rt) + (rs+ qt)i)

= (qs− rt)2 + (rs+ qt)2

= q2s2 − 2qsrt+ r2t2 + r2s2 + 2rsqt+ q2t2

= q2s2 + r2s2 + q2t2 + r2t2

= (q2 + r2) · (s2 + t2)
= N(q + ri) ·N(s+ ti)
= N(α) ·N(β)
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We first use this result to classify the units of Z[i].

Proposition 3.1.11. We have U(Z[i]) = {1,−1, i,−i}.

Proof. We have 1 · 1 = 1, (−1) · (−1) = 1, and i · (−i) = 1, so all of these elements are units. Suppose now
that α ∈ Z[i] is a unit and fix β ∈ Z[i] with αβ = 1. We then have

1 = 12 + 02

= N(1)
= N(αβ)
= N(α) ·N(β)

Since N(α) and N(β) are integers, it follows that N(α) | 1 in Z. Using the fact that N(α) ≥ 0, it follows
that N(α) = 1. Write α = a+ bi where a, b ∈ Z. We then have

1 = N(α) = a2 + b2

We conclude that |a| ≤ 1 and |b| ≤ 1. Since a, b ∈ Z, we can work through the various possibilities to deduce
that (a, b) is one of the following pairs: (1, 0), (−1, 0), (0, 1), or (0,−1). Therefore, α ∈ {1,−1, i,−i}.

Theorem 3.1.12. Z[i] is a Euclidean domain with Euclidean function N(a+ bi) = a2 + b2.

Proof. We already know that Z[i] is an integral domain. Suppose that α, β ∈ Z[i] with β 6= 0. When we
divide α by β in the field Q(i) we get α

β = s + ti for some s, t ∈ Q. Fix integers m,n ∈ Z closest to
s, t ∈ Q respectively, i.e. fix m,n ∈ Z so that |m − s| ≤ 1

2 and |n − t| ≤ 1
2 . Let γ = m + ni ∈ Z[i], and let

ρ = α− βγ ∈ Z[i]. We then have that α = βγ + ρ, so we need only show that N(ρ) < N(β). Now

N(ρ) = N(α− βγ)
= N(β · (s+ ti)− β · γ)
= N(β · ((s+ ti)− (m+ ni)))
= N(β · ((s−m) + (t− n)i))
= N(β) ·N((s−m) + (t− n)i)

= N(β) · ((s−m)2 + (t− n)2)

≤ N(β) · (1
4

+
1
4

)

=
1
2
·N(β)

< N(β)

where the last line follows because N(β) > 0.

We work out an example of finding a greatest common of 8 + 9i and 10− 5i in Z[i]. We follow the proof
to find quotients and remainders. Notice that

8 + 9i
10− 5i

=
8 + 9i
10− 5i

· 10 + 5i
10 + 5i

=
80 + 40i+ 90i− 45

100 + 25

=
35 + 130i

125

=
7
25

+
26
25
· i
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Following the proof (where we take the closest integers to 7
25 and 26

25 ), we should use the quotient i and
determine the remainder from there. We thus write

8 + 9i = i · (10− 5i) + (3− i)

Notice that N(3− i) = 9 + 1 = 10 which is less than N(10− 5i) = 100 + 25 = 125. Following the Euclidean
algorithm, we next calculate

10− 5i
3− i

=
10− 5i
3− i

· 3 + i

3 + i

=
30 + 10i− 15i+ 5

9 + 1

=
35− 5i

10

=
7
2
− 1

2
· i

Following the proof (where we now have many choices because 7
2 is equally close to 3 and 4 and − 1

2 is equally
close to −1 and 0), we choose to take the quotient 3. We then write

10− 5i = 3 · (3− i) + (1− 2i)

Notice that N(1 − 2i) = 1 + 4 = 5 which is less than N(3 − i) = 9 + 1 = 10. Going to the next step, we
calculate

3− i
1− 2i

=
3− i
1− 2i

· 1 + 2i
1 + 2i

=
3 + 6i− i+ 2

1 + 4

=
5 + 5i

5
= 1 + i

Therefore, we have
3− i = (1 + i) · (1− 2i) + 0

Putting together the various divisions, we see the Euclidean algorithm as:

8 + 9i = i · (10− 5i) + (3− i)
10− 5i = 3 · (3− i) + (1− 2i)

3− i = (1 + i) · (1− 2i) + 0

Thus, the set of common divisors of 8 + 9i and 10 − 5i equals the set of common divisors of 1 − 2i and 0,
which is just the set of divisors of 1− 2i. Since a greatest common divisor is unique up to associates and the
units of Z[i] are 1,−1, i,−i, it follows the set of greatest common divisors of 8 + 9i and 10− 5i is

{1− 2i,−1 + 2i, 2 + i,−2− i}

3.2 Principal Ideal Domains

We chose our definition of a Euclidean domain to abstract away the fundamental fact about Z that we can
always divide in such a way to get a quotient along with a “smaller” remainder. As we have seen, this ability
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allows us to carry over to these more general rings the existence of greatest common divisors and the method
of finding them via the Euclidean Algorithm.

Recall back when we working with Z that we had another characterization of (and proof of existence
for) the greatest common divisor. We proved that the greatest common divisor of two nonzero integers a
and b was the least positive number of the form ma + nb where m,n ∈ Z. Now the “least” part will have
no analogue in a general integral domain, so we will have to change that. Perhaps surprisingly, it turns out
that the way to generalize this construction is to work with ideals. As we will see, in hindsight, what makes
this approach to greatest common divisors work in Z is the fact that every ideal of Z is principal. We give
the integral domains which have this property a special name.

Definition 3.2.1. A principal ideal domain, or PID, is an integral domain in which every ideal is principal.

Before working with these rings on their own terms, we first prove that every Euclidean domains is a PID
so that we have a decent supply of examples. Our proof generalizes the one for Z in the sense that instead of
looking for a smallest positive element of the ideal we simply look for an element of smallest “size” according
to a given Euclidean function.

Theorem 3.2.2. Every Euclidean domain is a PID.

Proof. Let R be a Euclidean domain, and fix a Euclidean function N : R\{0} → N. Suppose that I is an
ideal of R. If I = {0}, then I = 〈0〉. Suppose then that I 6= {0}. The set

{N(a) : a ∈ I\{0}}

is a nonempty subset of N. By the well-ordering property of N, the set has a least element m. Fix b ∈ I
with N(b) = m. Since b ∈ I, we clearly have 〈b〉 ⊆ I. Suppose now that a ∈ I. Fix q, r ∈ R with

a = qb+ r

and either r = 0 or N(r) < N(b). Since r = a − qb and both a, d ∈ I, it follows that r ∈ I. Now if r 6= 0,
then N(r) < N(b) = m contradicting our minimality of m. Therefore, we must have r = 0 and so a = qb. It
follows that a ∈ 〈b〉. Since a ∈ I was arbitrary, we conclude that I ⊆ 〈b〉. Therefore, I = 〈b〉.

Corollary 3.2.3. Z, F [x] for F a field, and Z[i] are all PIDs.

Notice also that all fields F are also PIDs for the trivial reason that the only ideals of F are {0} = 〈0〉 and
F = 〈1〉. In fact, all fields are also trivially Euclidean domain via absolutely any function N : F\{0} → N
because you can always divide by a nonzero element with zero as a remainder.

It turns out that there are PIDs which are not Euclidean domains, but we will not construct examples
of such rings now. Returning to our other characterization of greatest common divisors in Z, we had that if
a, b ∈ Z not both nonzero, then we considered the set

{ma+ nb : m,n ∈ Z}

and proved that the least positive element of this set was the greatest common divisor. In our current ring-
theoretic language, the above set is the ideal 〈a, b〉 of Z, and a generator of this ideal is a greatest common
divisor. With this change in perspective/language, we can carry this argument over to an arbitrary PID.

Theorem 3.2.4. Let R be a PID and let a, b ∈ R.

1. There exists a greatest common divisor of a and b.

2. If d is a greatest common divisor of a and b, then there exists r, s ∈ R with d = ra+ sb.

Proof.
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1. Let a, b ∈ R. Consider the ideal

I = 〈a, b〉 = {ra+ sb : r, s ∈ R}

Since R is a PID, the ideal I is principal, so we may fix d ∈ R with I = 〈d〉. Since d ∈ 〈d〉 = 〈a, b〉, we
may fix r, s ∈ R with ra+ sb = d. We claim that d is a greatest common divisor of a and b.

First notice that a ∈ I since a = 1a + 0b, so a ∈ 〈d〉, and hence d | a. Also, we have b ∈ I because
b = 0a+ 1b, so b ∈ 〈d〉, and hence d | b. Thus, d is a common divisor of a and b.

Suppose now that c is a common divisor of a and b. Fix m,n ∈ R with a = cm and b = cn. We then
have

d = ra+ sb

= r(cm) + s(cn)
= c(rm+ sn)

Thus, c | d. Putting it all together, we conclude that d is a greatest common divisor of a and b.

2. For the d in part 1, we showed in the proof that there exist r, s ∈ R with d = ra + sb. Let d′ be any
other greatest common divisor of a and b, and fix a unit u with d′ = du. We then have

d′ = du = (ra+ sb)u = a(ru) + b(su)

If you are given a, b ∈ R and you know a greatest common divisor d of a and b, how can you explicitly
calculate r, s ∈ R with ra + sb = d? In a general PID, this can be very hard. However, suppose you are in
the special case where R is a Euclidean domain. Assuming that we can explicitly calculate quotients and
remainders for repeated division (as we could in Z, F [x], and Z[i]), we can calculate a greatest common
divisor d of a and b by “winding up” the Euclidean algorithm backwards as in Z.

For example, working in the Euclidean domain Z[i], we computed in the last section that 1 − 2i is a
greatest common divisor of 8 + 9i and 10− 5i by applying the Euclidean algorithm to obtain:

8 + 9i = i · (10− 5i) + (3− i)
10− 5i = 3 · (3− i) + (1− 2i)

3− i = (1 + i) · (1− 2i) + 0

Working backwards, we see that

1− 2i = 1 · (10− 5i) + (−3) · (3− i)
= 1 · (10− 5i) + (−3) · [(8 + 9i)− i · (10− 5i)]
= (1 + 3i) · (10− 5i) + (−3) · (8 + 9i)

It is possible to define a greatest common divisor of elements a1, a2, . . . , an ∈ R completely analogously
to our definition for pairs of elements. If you do so, even in the case of a nice Euclidean domain, you can
not immediately generalize the idea of the Euclidean Algorithm to many elements without doing a kind
of repeated nesting that gets complicated. However, notice that you can very easily generalize our PID
arguments to prove that greatest common divisors exist and are unique up to associates by following the
above proofs and simply replacing the ideal 〈a, b〉 with the ideal 〈a1, a2, . . . , an〉. You even conclude that it
possible to write a greatest common divisor in the form r1a1 + r2a2 + · · · + rnan. The assumption that all
ideals are principal is extremely powerful.

With the hard work of the last couple of sections in hand, we can now carry over much of our later work
in Z which dealt with relatively prime integers and primes. The next definition and ensuing two propositions
directly generalize corresponding results about Z.
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Definition 3.2.5. Let R be a PID. Two elements a, b ∈ R are relatively prime if 1 is a greatest common
divisor of a and b.

Proposition 3.2.6. Let R be a PID and let a, b, c ∈ R. If a | bc and a and b are relatively prime, then a | c.

Proof. Fix d ∈ R with bc = ad. Fix r, s ∈ R with ra+ sb = 1. Multiplying this last equation through by c,
we conclude that rac+ sbc = c, so

c = rac+ s(bc)
= rac+ s(ad)
= a(rc+ sd)

It follows that a | c.

Proposition 3.2.7. Suppose that R is a PID. If p is irreducible, then p is prime.

Proof. Suppose that p ∈ R is irreducible. By definition, p is nonzero and not a unit. Suppose that a, b ∈ R
are such that p | ab. Fix a greatest common divisor d of p and a. Since d | p, we may fix c ∈ R with p = dc.
Now p is irreducible, so either d is a unit or c is a unit. We handle each case.

• Suppose that d is a unit. We then have that 1 is an associate of d, so 1 is also a greatest common divisor
of p and a. Therefore, p and a are relatively prime, so as p | ab we may use the previous corollary to
conclude that p | b.

• Suppose that c is a unit. We then have that pc−1 = d, so p | d. Since d | a, it follows that p | a.

Therefore, either p | a or p | b. It follows that p is prime.

Definition 3.2.8. Let R be a commutative ring.

• A prime ideal of a ring R is an ideal P 6= R such that whenever ab ∈ P , either a ∈ P or b ∈ P .

• A maximal ideal of a ring R is an ideal M 6= R such that there is no ideal I with M ( I ( R.

Proposition 3.2.9. Let R be a commutative ring and let p ∈ R be nonzero. The ideal 〈p〉 is a prime ideal
of R if and only if p is a prime element of R.

Proof. Suppose first that 〈p〉 is a prime ideal of R. Notice that p 6= 0 by assumption and that p is not a unit
because 〈p〉 6= R. Suppose that a, b ∈ R and p | ab. We then have that ab ∈ 〈p〉, so as 〈p〉 is a prime ideal
we know that either a ∈ 〈p〉 or b ∈ 〈p〉. In the former case, we conclude that p | a, and in the latter case we
conclude that p | b. Since a, b ∈ R were arbitrary, it follows that p is a prime element of R.

Suppose conversely that p is a prime element of R. Suppose that a, b ∈ R and ab ∈ 〈p〉. We then have
that p | ab, so as p is a prime element we know that either p | a or p | b. In the former case, we conclude
that a ∈ 〈p〉 and in the latter case we conclude that b ∈ 〈p〉. Since a, b ∈ R were arbitrary, it follows that 〈p〉
is a prime ideal of R.

Recall the following important theorem from algebra.

Theorem 3.2.10. Let I be an ideal of the commutative ring R.

• I is a prime ideal of R if and only if R/I is an integral domain.

• I is a maximal ideal of R if and only if R/I is a field.

Corollary 3.2.11. In a commutative ring R, every maximal ideal is a prime ideal.
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Proposition 3.2.12. Let R be a PID and let a ∈ R be nonzero. The following are equivalent.

1. 〈a〉 is a maximal ideal.

2. 〈a〉 is a prime ideal.

3. a is a prime.

4. a is irreducible.

Proof. Notice that 1 → 2 → 3 → 4 from the above results (or see Section 10.5 of the Algebra notes). We
prove that 4→ 1. Suppose that a is irreducible, and let M = 〈a〉. Since a is not a unit, we have that 1 /∈ 〈a〉,
so M 6= R. Suppose that I is an ideal with M ⊆ I ⊆ R. Since R is a PID, there exists b ∈ R with I = 〈b〉.
We then have that 〈a〉 ⊆ 〈b〉, so b | a. Fix c ∈ R with a = bc. Since a is irreducible, either b is a unit or c is
a unit. In the former case, we have I = 〈b〉 = R, and in the latter case we have that b is an associate of a so
I = 〈b〉 = 〈a〉 = M .

Corollary 3.2.13. If R is a PID, then every nonzero prime ideal is maximal.

Notice that we need to assume that the ideal is nonzero because {0} is a prime ideal of Z that is not
maximal. In fact, in every integral domain that is that a field, {0} is nonmaximal prime ideal.

3.3 Factorizations and Noetherian Rings

We now seek to seek to prove an analogue of the Fundamental Theorem of Arithmetic in “nice” integral
domains (say Euclidean domains or even PIDs). We have developed most of the tools to do this when we
showed that irreducibles are prime in any PID. This fact in Z (that if p is “prime” in Z and p | ab, then
either p | a or p | d) was the key tool used to establish the Fundamental Theorem of Arithmetic. However,
there is one other aspect of the Fundamental Theorem of Arithmetic that is easy to overlook. Namely, why
does even exist a factorization into irreducibles of every (nonzero nonunit) element? In Z, this is easy to
argue by induction because proper factors are smaller in absolute value. In Euclidean domains with “nice”
Euclidean functions (say where N(b) < N(a) whenever b | a and b is not an associate of a), you can mimic
this argument. For example, it is relatively straightforward to prove that in Z[i] every (nonzero nonunit)
element factors into irreducibles. But what happens in a general PID?

Let’s analyze where a problem could arise. Suppose R is an integral domain and that a ∈ R is nonzero
and not a unit. If a is irreducible, we have trivially factored it into irreducibles. Suppose then that a is not
irreducible and write a = bc where neither b nor c is a unit. If either b or c is irreducible, we are happy
with that piece, but we may need to factor b or c (or perhaps both) further. And from here, their factors
may break up further still. How do we know that this process of repeatedly breaking down element must
eventually stop? There does not seem to be any strong reason to believe that it does if we do not have a
way of saying that factors are “smaller”. In fact, there are integral domains where some elements are not
products of irreducibles and so this process goes on forever. However, this process must stop in any PID, and
we go about developing the tools to prove that now. The key idea is to turn everything into ideals because
that is the only aspect of a PID we have control over. Recall the following basic facts from algebra.

Proposition 3.3.1. Let R be a commutative ring. For any a, b ∈ R we have a | b if and only if 〈b〉 ⊆ 〈a〉.

Proof. First notice that if a | b, then b ∈ 〈a〉, hence 〈b〉 ⊆ 〈a〉 because 〈b〉 is the smallest ideal containing b.
If conversely we have 〈b〉 ⊆ 〈a〉, then clearly b ∈ 〈a〉, so a | b.

Corollary 3.3.2. Let R be an integral domain. For any a, b ∈ R, we have 〈a〉 = 〈b〉 if and only if a and b
are associates.
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Proof. If 〈a〉 = 〈b〉, then both a | b and b | a by the previous proposition, so a and b are associates. Conversely,
if a and b are associates, then both a | b and b | a, hence 〈a〉 = 〈b〉 from the previous proposition.

Corollary 3.3.3. Suppose that R is an integral domain and a, b ∈ R. If b | a and b is not an associate of
a, then 〈a〉 ( 〈b〉.

Proof. This follows immediately from the previous two results.

Suppose now that R is an integral and a ∈ R is nonzero and not a unit. Write a = bc where b and c are
both not units. We then have that neither b nor c is an associate of a, so 〈a〉 ( 〈b〉 and 〈a〉 ( 〈c〉. Thus,
in terms of ideals, we have become larger. If we factor further still, we get even larger ideals. So we have
turned the question on its head and need to think about whether this process of ever larger ideals can go on
forever. We define a special class of rings where this does not happen.

Definition 3.3.4. A commutative ring R is said to be Noetherian if whenever

I1 ⊆ I2 ⊆ I3 ⊆ . . .

is a sequence of ideals, there exists N ∈ N such that Ik = IN for all k ≥ N . Equivalently, there is no strictly
increasing sequence of ideals

I1 ( I2 ( I3 ( . . .

Proposition 3.3.5. Let R be a commutative ring. We then have that R is Noetherian if and only if
every ideal of R is finitely generated (i.e. for every ideal I of R, there exist a1, a2, . . . , am ∈ R with I =
〈a1, a2, . . . , am〉).

Proof. Suppose first that every ideal of R is finitely generated. Let

I1 ⊆ I2 ⊆ I3 ⊆ . . .

be a sequence of ideals. Let

J =
∞⋃
k=1

Ik = {r ∈ R : r ∈ Ik for some k ∈ N+}

We claim that J is an ideal of R. First notice that 0 ∈ I1 ⊆ J . Suppose that a, b ∈ J . Fix k, ` ∈ N+ with
a ∈ Ik and b ∈ I`. We then have a, b ∈ Imax{k,`} ⊆ J . Suppose that a ∈ J and r ∈ R. Fix k ∈ N+ with
a ∈ Ik. We then have that ra ∈ Ik ⊆ J .

Since J is an ideal of R and we are assuming that every ideal of R is finitely generated, there ex-
ist a1, a2, . . . , am ∈ R with J = 〈a1, a2, . . . , am〉. For each i, fix ki ∈ N with ai ∈ Iki . Let N =
max{k1, k2, . . . , km}. We then have that ai ∈ IN for each i, hence J = 〈a1, a2, . . . , am〉 ⊆ IN . There-
fore, for any n ≥ N , we have

IN ⊆ In ⊆ J ⊆ IN
hence In = IN .

Suppose conversely that some ideal of R is not finitely generated and fix such an ideal J . Define a
sequence of elements of J as follows. Let a1 be an arbitrary element of J . Suppose that we have defined
a1, a2, . . . , ak ∈ J . Since J is not finitely generated, we have that

〈a1, a2, . . . , an〉 ( J

so we may let ak+1 be some (any) element of J\〈a1, a2, . . . , ak〉. Letting In = 〈a1, a2, . . . , an〉, we then have

I1 ( I2 ( I3 ( . . .

so R is not Noetherian.
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Corollary 3.3.6. Every PID is Noetherian.

Proof. This follows immediately from the fact that in a PID every ideal is generated by one element.

Theorem 3.3.7. In a Noetherian integral domain, every nonzero nonunit element can be written as a
product of irreducibles.

Definition 3.3.8. Let {0, 1}∗ be the set of all finite sequences of 0’s and 1’s (including the “empty string”
λ). A tree is a subset T ⊆ {0, 1}∗ which is closed under initial segments. In other words, if σ ∈ T and τ is
an initial segment of S, then τ ∈ S.

For example, the set {λ, 0, 1, 00, 01, 011, 0110, 0111} is a tree.

Lemma 3.3.9 (König’s Lemma). Every infinite tree has an infinite branch. In other words, if T is a tree
with infinitely many elements, then there is an infinite sequence of 0’s and 1’s such that every finite initial
segment of this sequence is an element of T .

Proof. Let T be a tree with infinitely many elements. We build the infinite sequences in stages. That is, we
define finite sequences σ0 ≺ σ1 ≺ σ2 ≺ . . . recursively where each |σn| = n. In our construction, we maintain
the invariant that there are infinitely many element of T extending σn.

We begin by defining σ0 = λ and notice that there are infinitely many element of T extending λ because
λ is an initial segment of every element of T trivially. Suppose that we have defined σn in such a way that
|σn| = n and there are infinitely many elements of T extending σn. We then must have that either there
are infinitely many elements of T extending σn0 or there are infinitely many elements of T extending σn1.
Thus, we may fix an i ∈ {0, 1} such that there are infinitely many elements of T extending σni, and define
σn+1 = σni.

We now take the unique infinite sequence extending all of the σn and notice that it has the required
properties.

Proof 1 of Theorem 3.3.7 - With König’s Lemma. Suppose that a ∈ R is a nonzero nonunit. Recursively
factor a into nonunits down a tree stopping the growth at any irreducibles you reach. This tree can not
have an infinite path because this would give a strictly increasing sequence of principal ideals. Therefore,
by K”onig’s Lemma, the tree is finite. It follows that a is the product of the leaves, and hence a product of
irreducibles.

Proof 2 of Theorem 3.3.7 - Without König’s Lemma. Suppose that a ∈ R is a nonzero nonunit which is not
a product of irreducible elements. We define a sequence of elements d1, d2, . . . in R as follows. Start by
letting d1 = a. Assume inductively that dn is a nonzero nonunit which is not a product of irreducibles. In
particular, dn is itself not irreducible, so we may write dn = bc for some choice of nonzero nonunits b and c.
Now it is not possible that both b and c are products of irreducibles because otherwise dn would be as well.
Thus, we may let dn+1 be one of b and c, chosen so that dn+1 is also not a product of irreducibles. Notice
that dn+1 is a nonzero nonunit, that dn+1 | dn, and dn+1 is not an associate of dn because neither b nor c
are units. Therefore,

〈d1〉 ( 〈d2〉 ( . . .

contradicting the above proposition. It follows that every nonzero nonunit is a product of irreducibles.

Corollary 3.3.10. In every PID, every nonzero nonunit element can be written as a product of irreducibles.

Proof. Immediate from the fact that every PID is Noetherian.

We existence out of the way, we now move on to uniqueness of factorization into irreducibles. We try to
generalize the results about the integers as much as possible.
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Definition 3.3.11. Let R be an integral domain and p ∈ R be irreducible. Define a function ordp : R →
N∪{∞} as follows. Given a ∈ R, let ordp(a) be the largest k ∈ N such that pk | a if one exists, and otherwise
let ordp(a) =∞.

Lemma 3.3.12. Let R be a PID. Let p ∈ R be irreducible, let a ∈ R, and let k ∈ N. The following are
equivalent.

1. ordp(a) = k

2. pk | a and pk+1 - a

3. There exists m ∈ R with a = pkm and p - m

Proof. • 1→ 2 is immediate.

• 2→ 1: Suppose that pk | a and pk+1 - a. We clearly have ordp(a) ≥ k. Suppose that there exists ` > k
with p` | a. Since ` > k, we have ` ≥ k + 1. This implies that pk+1 | p`, so since p` | a we conclude
that pk+1 | a. This contradicts our assumption. Therefore, there is no ` > k with p` | a, and hence
ordp(a) = k.

• 2 → 3: Suppose that pk | a and pk+1 - a. Fix m ∈ R with a = pkm. If p | m, then we may fix
n ∈ R with m = pn, which would imply that a = pkpn = pk+1n contradicting the fact that pk+1 - a.
Therefore, we must have p - m.

• 3 → 2: Fix m ∈ R with a = pkm and p - m. We clearly have pk | a. Suppose that pk+1 | a and fix
n ∈ R with a = pk+1n. We then have pkm = pk+1n, so m = pn. This implies that p | m, which is a
contradiction. Therefore, pk+1 - a.

The following theorem was essential in proving the Fundamental Theorem of Arithmetic. As usual, the
key fact is that irreducibles are prime in PIDs.

Theorem 3.3.13. Let R be a PID. Let p ∈ R be irreducible. We have the following.

1. ordp(ab) = ordp(a) + ordp(b) for all a, b ∈ R.

2. ordp(an) = n · ordp(a) for all a ∈ R and n ∈ N+.

Proof. We follow the proofs in Homework 1. Let a, b ∈ R. First notice that if ordp(a) =∞, then pk | a for
all k ∈ N, hence pk | ab for all k ∈ N, and thus ordp(ab) =∞. Similarly, if ordp(b) =∞, then ordp(ab) =∞.
Suppose then that both ordp(a) and ordp(b) are finite, and let k = ordp(a) and ` = ordp(b). Using Lemma
3.3.12, we may then write a = pkm where p - m and b = p`n where p - n. We then have

ab = pkmp`n = pk+` ·mn

Now if p | mn, then since p is prime (as it is irreducible and we are in a PID), we conclude that either p | m
or p | n, but both of these are contradictions. Therefore, p - mn. Using Lemma 1.6 again, it follows that
ordp(ab) = k + `.

Lemma 3.3.14. Let R be a PID, and let p ∈ R be irreducible.

1. For any prime q that is an associate of p, we have ordp(q) = 1.

2. For any prime q that is not an associate of p, we have ordp(q) = 0.

3. For any unit u, we have ordp(u) = 0.
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Proof. 1. Suppose that q is a prime that is an associate of p. Fix a unit u with q = pu. Notice that if
p | u, then since u | 1, we conclude that p | 1, which would imply that p is a unit. Since p is not a unit,
it follows that p - u. Therefore, ordp(q) = 1 by Lemma 3.3.12.

2. Suppose that q is a prime that is not an associate of p. Since q is prime, it is irreducible, so its only
divisors are units and associates. Since p is not a unit nor an associate of q, it follows that p - q.
Therefore, ordp(q) = 0.

3. This is immediate because if p | u, then since u | 1, we could conclude that p | 1. This implies that p
is a unit, which is a contradiction.

Lemma 3.3.15. Let R be a PID. Let a ∈ R and let p ∈ R be irreducible. Suppose that u is a unit, that qi
are irreducibles, and that

a = uq1q2 · · · qk
We then have that exactly ordp(a) many of the qi are associates of p.

Proof. Since
a = uq1q2 · · · qk

we have

ordp(a) = ordp(uq1q2 · · · qk)

= ordp(u) +
k∑
i=1

ordp(qi)

=
k∑
i=1

ordp(qi)

The terms on the right are 1 when qi is an associate of p and 0 otherwise. The result follows.

Definition 3.3.16. A Unique Factorization Domain, or UFD, is an integral domain R such that:

1. Every nonzero nonunit is a product of irreducible elements.

2. If q1q2 · · · qn = r1r2 . . . rm where each qi and rj are irreducible, then m = n and there exists a permu-
tation σ ∈ Sn such that pi and qσ(i) are associates for every i.

Theorem 3.3.17. Every PID is a UFD. Moreover, if R is a PID and

uq1q2 · · · q` = wr1r2 · · · r`

where u and w are units, and each of the qi and rj are irreducible, then k = ` and there exists σ ∈ Sk such
that qi and rσ(i) are associates for all i.

Proof. Let R be a PID. We know from above that every PID is Noetherian, and hence every nonzero nonunit
in R is a product of irreducibles. Suppose now that

uq1q2 · · · q` = wr1r2 · · · r`

where u and w are units, and each of the qi and rj are irreducible. Let p be an arbitrary prime. We know
from the lemma that exactly ordp(n) many of the qi are associates of p, and also that exactly ordp(n) many
of the rj are associates of p. Thus, for every prime p, there are an equal number of associates of p on each
side. Matching up the elements on the left with corresponding associates on the right gives the required
permutation.
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3.4 Factorizations in the Gaussian Integers and Sums of Squares

Proposition 3.4.1. An element α ∈ Z[i] is a unit if and only if N(α) = 1. Therefore, U(Z[i]) =
{1,−1, i,−i},

Proof. Suppose that α ∈ Z[i] is a unit. Fix β ∈ Z[i] with αβ = 1. We then have

1 = N(1) = N(αβ) = N(α)N(β)

Now N(α) and N(β) are both nonnegative integers, so N(α) | 1 in the integers, Therefore, N(α) = 1,
Suppose conversely that α ∈ Z[i] satisfies N(α) = 1. Write α = a+ bi where a, b ∈ Z, We then have

1 = N(α) = N(a+ bi) = a2 + b2 = (a+ bi)(a− bi)

Since a− bi ∈ Z[i], it follows that a− bi has an inverse so is a unit.
Finally, to find all the units, we need only find all α ∈ Z[i] with N(α) = 1. That is, we need only find

those pairs a, b ∈ Z so that
a2 + b2 = N(a+ bi) = 1

If either |a| ≥ 2 or |b| ≥ 2, then a2 + b2 ≥ 4 > 1. If both |a| = 1 = |b|, then a2 + b2 = 1 + 1 = 2 > 1. If both
|a| = 0 = |b|, then a2 + b2 = 0 + 0 = 0 < 1. Thus, we must have exactly one of a or b in the set {1,−1} and
the other equal to the 0. This gives the four units {1,−1, i,−i},

Now 5 is of course prime (irreducible) in Z. However, we have

5 = (2 + i)(2− i)

and neither 2 + i nor 2− i is a unit, so 5 is not irreducible in Z[i]
The case of 3 is different. Of course, 3 is prime (irreducible) in Z, but we just saw above that there is

no reason to believe a priori that 3 is prime (irreducible) in Z[i]. However, we now check that this is indeed
the case. Suppose that α, β ∈ Z[i] with 3 = αβ. We then have that

9 = N(3) = N(αβ) = N(α)N(β)

Therefore, we must have that N(α) and N(β) are natural numbers which divide 9 in the integers. Thus,
N(α) ∈ {1, 3, 9}. However, we can not have N(α) = 3 because there are no solutions to a2 + b2 = 3 in
the integers. It follows that N(α) ∈ {1, 9}. If N(α) = 1, then α is a unit by the previous Proposition. If
N(α) = 9, then we must have N(β) = 1, so β is a unit by the previous Proposition. Therefore, whenever
α, β ∈ Z[i] and 3 = αβ, then either α is a unit or β is a unit. It follows that 3 is irreducible (and hence
prime) in Z[i].

Before examining the case of 5 further, we prove a simple lemma.

Lemma 3.4.2. If α ∈ Z[i] and N(α) is a prime in Z, then α is prime in Z[i].

Proof. Suppose that α = βγ in Z[i]. We then have that

N(α) = N(βγ) = N(β)N(γ)

Since this is a product in Z and N(α) is prime in Z, it follows that either N(β) = 1 or N(γ) = 1, so either
β is a unit or γ is a unit.

We saw above that 5 = (2 + i)(2 − i). The question arises as to whether the factors on the right break
down further. Notice that

N(2 + i) = 22 + 12 = 5
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and
N(2− i) = 22 + (−1)2 = 5

Therefore, by the lemma, both of these factors are irreducible in Z[i]. Therefore, the factorization

5 = (2 + i)(2− i)

is the unique prime factorization in the ring Z[i]. Notice that we also have

5 = (1 + 2i)(1− 2i)

and both 1 + 2i and 1− 2i are irreducible in Z[i] since they have norm 5. However, we have 1 + 2i = i(2− i)
and 1− 2i = −i(2− i), so the elements of this factorization are indeed associates of the one above,

Theorem 3.4.3. Suppose that p is prime element of Z. We then have that p can be written as the sum of
two squares in Z if and only if p is no longer prime in Z[i]

Proof. Suppose first there exist a, b ∈ Z with p = a2 + b2. Notice that both a 6= 0 and b 6= 0 because p is not
a square is Z. In the ring Z[i], we then have that

p = a2 + b2 = (a+ bi)(a− bi)

Now neither a+ bi nor a− bi is a unit because a 6= 0 and b 6= 0 from above (so neither of them is 1,−1, i,−i).
Therefore, p is not irreducible and hence not prime in Z[i].

Suppose conversely that p is no longer prime in Z[i]. We then have that p is not irreducible in Z[i], so
there exist nonunits α, β ∈ Z[i] with p = αβ. We then have

p2 = N(p) = N(αβ) = N(α)N(β)

Since N(α) and N(β) are both natural numbers, we have that they are both in the set {1, p, p2}. However,
both are nonunits, so we know that N(α) 6= 1 and N(β) 6= 1. It follows that N(α) = p = N(β), Writing
α = a+ bi, we have

p = N(α) = N(a+ bi) = a2 + b2

so p is the sum of two squares in Z.

Theorem 3.4.4. An odd prime p ∈ Z is the sum of two squares in Z if and only if p ≡ 1 (mod 4).

Proof. We saw at the very beginning of the course that every square is congruent to either 0 or 1 modulo 4.
Thus, the sum of two squares is one of 0, 1, or 2 modulo 4. Since an odd prime p must satisfy either p ≡ 1
(mod 4) or p ≡ 3 (mod 4), it follows that if an odd prime is the sum of two squares then p ≡ 1 (mod 4).

Suppose conversely that p ≡ 1 (mod 4). By the previous theorem it suffices to show that p is not prime
in Z[i]. Since p ≡ 1 (mod 4), we know that −1 is a square modulo p, so there exists a ∈ Z with a2 ≡ −1
(mod p). We then have that p | (a2 + 1) in Z, so p | (a2 + 1) in Z[i] also because Z is a subring of Z[i]. Now
a2 + 1 = (a + i)(a − i), hence p | (a + i)(a − i). However, in Z[i] we have both p - (a + i) and p - (a − i)
(because p · (k + `i) = pk + (p`)i so any multiple of p in Z[i] must satisfy that both the real and imaginary
parts are divisible by p in Z). It follows that p is not prime in Z[i]. Therefore, by the previous proposition,
p is the sum of two squares in Z.

We summarize the results in the following theorem.

Theorem 3.4.5. Let p ∈ Z be an odd prime. The following are equivalent.

1. p is the sum of two squares in Z, i.e. there exist a, b ∈ Z with p = a2 + b2.
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2. p is reducible (and hence no longer prime) in Z[i].

3. −1 is a square modulo p.

4. p ≡ 1 (mod 4).

Proof. We have 1↔ 2 by Theorem 3.4.3, 3↔ 4 by Theorem 2.8.1, and 1↔ 4 by Theorem 3.4.4. However,
we show how to prove 1 → 2 → 3 → 2 → 1 directly to see how we could get by even if we did not have a
classification for when −1 is a square modulo 4.

• 1 → 2: Suppose that p = a2 + b2. Notice that a 6= 0 and b 6= 0 because primes are not squares. We
then have

p = (a+ bi)(a− bi)
Since both a 6= 0 and b 6= 0, neither a+ bi nor a− bi is a unit (because U(Z[i]) = {±1,±i}). Thus, p
is reducible in Z[i].

• 2→ 3: Suppose first that p ∈ Z is an odd prime which is reducible in R. Fix α, β ∈ R both nonunits
with p = αβ. Taking norms we see that

p2 = N(p) = N(αβ) = N(α)N(β)

Since the norm of every element of R is a nonnegative integer and both N(α) 6= 1 and N(β) 6= 1
(because they are nonunits), it follows that N(α) = p = N(β). Let α = a+ bi where a, b ∈ Z. We then
have

p = N(α) = N(a+ bi) = a2 + b2

Suppose that p | b in Z. We then have p | (p− b2) in Z, so p | a2 in Z, and hence p | a in Z because p is
prime in Z. Since p | a and p | b in Z, we then have that p2 | a2 and p2 | b2 in Z, so we could conclude
that p2 | (a2 + b2) in Z and hence p2 | p in Z which is a contradiction. Therefore, p - b in Z.

Now we know that p = a2 + b2, so p | (a2 − (−b2)) and hence

a2 ≡ −b2 (mod p)

We just showed that p - b in Z, so gcd(b, p) = 1, and hence we may fix c ∈ Z with bc ≡ 1 (mod p).
Multiplying both sides of the above congruence by c2, we conclude that

a2c2 ≡ −b2c2 (mod p)

so (ac)2 ≡ −(bc)2 ≡ −1 (mod p). Therefore, −1 is a square modulo p.

• 3 → 1: Fix a ∈ Z with a2 ≡ −1 (mod p). We then have that p | (a2 + 1) in Z, so since (a2 + 1) =
(a+ i)(a− i) in Z[i], it follows that

p | (a+ i)(a− i)
in Z[i]. Now notice that p(k + `i) = pk + p`i for any k, ` ∈ Z, so if p | (c+ di) in Z[i], then both p | c
and p | d in Z. Since p - 1 and p - −1 in Z, it follows that p - (a+ i) and p - (a− i) in Z[i]. Therefore,
we know that p is not prime in Z[i]. Since Z[i] is a PID, it follows that p is reducible in Z[i] (notice
that p is not a unit because its norm is not 1).

• 2 → 1: Suppose that p is reducible in Z[i]. Fix nonunits α, β ∈ Z[i] such that p = αβ. We then have
that N(p) = N(αβ), so p2 = N(α) ·N(β). Now N(α) 6= 1 and N(β) 6= 1 since they are not units, so
as N(α) and N(β) are nonnegative, we must have N(α) = p = N(β). Fixing a, b ∈ Z with α = a+ bi,
we have

p = N(α) = a2 + b2

which completes the proof.
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Proposition 3.4.6. If p ≡ 1 (mod 4) is an odd prime, then there is a unique way to write p as the sum
of two squares up to change in order and sign. In other words, if a2 + b2 = p = c2 + d2, then one of the
following is true:

• a = ±c and b = ±d

• a = ±d and b = ±c

Proof. Since p ≡ 1 (mod 4), there exist a, b ∈ Z with p = a2 + b2 by the previous theorem. Suppose that
a, b, c, d ∈ Z and that both a2 + b2 = p = c2 + d2. Now none of a, b, c, d is zero because p is not a square in
Z, so N(a+ bi) = a2 + b2 ≥ 2 and N(c+ di) = c2 + d2 ≥ 2. We have

N(a+ bi) = N(a− bi) = p

so both a+ bi and a− bi are irreducible in Z[i] by Lemma 3.4.2. Similarly we have that

N(c+ di) = N(c− di) = p

so both c+ di and c− di are irreducible in Z[i]. Since Z[i] is a UFD and we have

(a+ bi)(a− bi) = (c+ di)(c− di)

where all factors are irreducible, we know that the factors on the left pair up with factors on the right as
associates. In particular, either a+ bi and c+ di are associates, or a+ bi and c− di are associates. There are
four units in Z[i], namely {1,−1, i,−i}, so we now have 8 possible cases. Working through the 8 cases gives
the above 8 possibilities. For example, if a+ bi = c+ di, then a = c and b = d, while if a+ bi = (−i)(c− di),
then a+ bi = −d− ci so a = −d and b = −c.

Now we move from primes to arbitrary integers. Clearly if an integer is the sum of two squares, then it
is nonnegative. We also have the following.

Proposition 3.4.7. For any a, b, c, d ∈ Z, we have

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2

Proof. One proof is direct computation. We ahve

(a2 + b2) · (c2 + d2) = a2c2 + a2d2 + b2c2 + b2d2

= a2c2 − 2acbd+ b2d2 + a2d2 + 2adbc+ b2c2

= (ac− bd)2 + (ad+ bc)2

Alternatively, one can work in the Gaussian Integers to “see” the formula arise more naturally:

(a2 + b2)(c2 + d2) = (a+ bi)(a− bi)(c+ di)(c− di)
= (a+ bi)(c+ di)(a− bi)(c− di)
= ((ac− bd) + (ad+ bc)i) · ((ac− bd)− (ad+ bc)i)

= (ac− bd)2 + (ad+ bc)2

Corollary 3.4.8. If each of m,n ∈ Z can be written as the sum of two squares, then mn can also be written
as the sum of two squares
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Proof. Immediate.

Now we know that every prime p ≡ 1 (mod 4) is the sum of two squares. Clearly 2 = 12 + 12 is the sum
of two squares, and q2 = q2 + 02 is trivially the sum of two squares for any prime q ≡ 3 (mod 4). Thus,
using the previous corollary, if n ≥ 2 and every prime q ≡ 3 (mod 4) appearing in the prime factorization of
n occurs to an even power, then n is the sum of two squares. We now go about proving the converse.

Lemma 3.4.9. Suppose that a, b ∈ Z and q ∈ Z is prime with q | (a2 + b2). If q ≡ 3 (mod 4), then q | a and
q | b.

Proof. Let q be prime with q | (a2 + b2). We prove the contrapositive. Suppose that either q - a or q - b.
Since a2 + b2 = b2 + a2, we can assume (by interchanging the roles of a and b if necessary) that q - b. Since q
is prime, it follows that gcd(b, q) = 1. Thus, we may fix c ∈ Z with bc ≡ 1 (mod q). Now a2 ≡ −b2 (mod q),
so multiplying both sides by c2 we see that (ac)2 ≡ −1 (mod q). Thus, −1 is a square modulo q and hence
q ≡ 1 (mod 4).

Theorem 3.4.10. An integer n ∈ Z is the sum of two squares in Z if and only if either

• n = 0 or n = 1

• n ≥ 2 and ordq(n) is even for all primes q ≡ 3 (mod 4).

Proof. We have 0 = 02 + 02, 1 = 12 + 02, and the existence of all of the others follows from the argument
above. We prove that these are the only possibilities by induction on n. The base case is trivial. Suppose
that n ≥ 2 and that all smaller numbers satisfy the result. Suppose that n = a2 + b2. Let q be a prime with
q ≡ 3 (mod 4). If q - n, then trivially ordq(n) = 0 is even. Suppose then that q | n. By the lemma, we know
that q | a and q | b so we may fix k, ` ∈ Z with a = qk and b = q`. We then have

n = a2 + b2 = (qk)2 + (q`)2 = q2(k2 + `2)

Now k2 + `2 is a sum of two squares with k2 + `2 < n, so by induction we know that ordq(k2 + `2) is even.
Therefore

ordq(n) = 2 + ordq(k2 + `2)

is also even. Since q was arbitrary prime, we conclude that ordq(n) is even for primes q ≡ 3 (mod 4). This
complete the induction.

Theorem 3.4.11. Up to associates, the prime elements of Z[i] are the following:

• 1 + i

• Every prime number q ∈ Z which satisfies q ≡ 3 (mod 4).

• For every prime number p ∈ Z which satisfies p ≡ 1 (mod 4), if we write p = a2 + b2 for the unique
choice of a and b satisfying 1 ≤ a < b, the elements a+ bi and a− bi.

Proof. We first show that each of the above are indeed prime elements of Z[i]. Notice that N(1 + i) =
12 + 12 = 2 is prime in Z, so 1 + i is prime in Z[i] by Lemma 3.4.2. Also, if p ≡ 1 (mod 4) and we have
p = a2 + b2, then N(a + bi) = N(a − bi) = p a prime in Z, so again a + bi and a − bi are prime in Z[i] by
Lemma 3.4.2. Suppose that q is prime in Z and that q ≡ 3 (mod 4). Since q is not the sum of two squares
by Theorem 3.4.4, we know that q is remains prime in Z[i] by Proposition 3.4.3. Thus, each of the above
are prime. We need only show that none of the above are associates. Now associates have the same norm,
and we have N(1 + i) = 2 and N(q) = q2 for all q ≡ 3 (mod 4), so none of these are associates. Suppose
that p ≡ 1 (mod 4) and we write p = a2 + b2 for the unique choice of a and b satisfying 1 ≤ a < b. We
have N(a+ bi) = p = N(a− bi), so these elements are not associates of any others. Finally, a simple check
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through the four units shows that a + bi and a − bi are not associates of each other either (here we make
essential use of the the fact that a 6= b because p = a2 +b2 is an odd prime and hence p 6= 2a2 for any a ∈ Z).

Suppose that π ∈ Z[i] is prime. Let n = N(π) ∈ N+. If n = 0, then π = 0 so π is not prime. Also,
if n = 1, then π is a unit so π is not prime. Suppose then n ≥ 2. Write n as a product of primes in Z as
n = p1p2 · · · pk. Notice that ππ = N(π) = n (where π is the complex conjugate of π), so π | n in Z[i]. Hence,
in Z[i] we have that

π | p1p2 · · · pk
and since π is prime it follows that π divides some element on the right in Z[i]. In particular, we may fix a
prime number p ∈ Z such that π | p in Z[i]. We know have three cases.

• Suppose that p ≡ 3 (mod 4). Since p is prime (irreducible) in Z[i] and π | p, we know that either π is
a unit or π is an associate of p. The former is impossible, so π is an associate of p.

• Suppose that p ≡ 1 (mod 4). Writing p = a2 + b2 where 1 ≤ a < b, we have that p = (a+ bi)(a− bi)
and each of these factors are prime (irreducible) in Z[i] because they have norm p (which is prime in
Z). Since π is prime in Z[i] and π | (a + bi)(a − bi), we have that π divides one of these factors, and
since they are both irreducible and π is not a unit, it follows that π is an associate of one of these
factors.

• Suppose that p = 2. Now 2 = (1 + i)(1 − i) and each of these factors are prime (irreducible) in Z[i]
because they have norm 2. Since π is prime in Z[i] and π | (1+ i)(1− i), either π | (1+ i) and π | (1− i).
Thus, π is an associate of either 1 + i or 1 − i. Finally, notice that (1 − i) = −i(1 + i), so these two
factors are associates of each other, and thus in either case π is an associate of 1 + i.

3.5 Pythagorean Triples and Diophantine Equations

Theorem 3.5.1. Let R be a PID. Suppose that r, a, b ∈ R and n ∈ N+ is such that rn = ab. Suppose also
that a and b are relatively prime. There exists u ∈ U(R) and s ∈ R with a = usn. Similarly, there exists
v ∈ U(R) and t ∈ R with b = vtn.

Proof. Let p ∈ R be an arbitrary irreducible. Applying ordp to both sides of rn = ab gives

n · ordp(r) = ordp(a) + ordp(b)

Notice that we can not have ordp(a) and ordp(b) both positive (since this would imply p is a nonunit common
divisor of a and b). Now if ordp(a) = 0, then n | ordp(b) in Z, while if ordp(b) = 0, then n | ordp(a) in Z.
Therefore, for every irreducible p ∈ R, we have both n | ordp(a) in Z and n | ordp(b) in Z.

Now write a as a product of irreducibles

a = q1q2 · · · q`

Since n | ordp(a) for all irreducibles p ∈ R, it follows that the number of associates of p in the above product
is a multiple of n. Factoring out units to make these associates equal, it follows that we can write

a = upnk11 pnk22 · · · pnk``

where u is a unit and the pi are not associates of each other. We then have

a = u · (pk11 p
k2
2 · · · p

k`
` )n

The argument for b is completely analogous.
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3.5.1 Pythagorean Triples

Using this theorem, one can solve certain Diophantine equations by working over a PID such as Z[i]. We
first show how to work in Z[i] to derive parameterizations of the primitive Pythagorean triples as we did in
Theorem 1.7.6. This approach is slightly faster than the elementary one we presented, and it has the key
advantage of “explaining” the formulas as arising from multiplication in C.

Assume then that (a, b, c) is a primitive Pythagorean triple. Recall that we know that exactly one of a
and b is even and that c is odd from Proposition 1.7.5. Now we have

c2 = a2 + b2 = (a+ bi)(a− bi)

We claim that a + bi and a − bi are relatively prime in Z[i]. In order to show this, it suffices to show that
a+ bi and a− bi have no irreducible common divisor. Suppose then that δ is an irreducible common divisor
of a+ bi and a− bi. We then have that δ divides both

(a+ bi) + (a− bi) = 2a and (a+ bi)− (a− bi) = 2bi

Notice that since δ | 2bi, we also know that δ divides 2bi · (−i) = 2b. Thus, δ is a common divisor of 2a and
2b in Z[i]. Now in Z, we have that a and b are relatively prime, so there exists m,n ∈ Z with ma+ nb = 1.
We then have m · 2a+ n · 2b = 2, so δ | 2 in Z[i]. Recall that in Z[i], we have

2 = (−i)(1 + i)2

Thus, since δ is irreducible, we must have that δ is an associate of 1 + i. In particular, we conclude that
1 + i | δ. By taking norms we infer that 2 | N(δ) in Z. Since δ | a + bi, this implies that δ | c2 in Z[i], and
hence N(δ) | c4 in Z. Therefore, we would have that c is even, which is a contradiction.

We now have

c2 = (a+ bi)(a− bi)

where a + bi and a − bi are relatively prime in Z[i]. Using the above theorem, we may fix µ ∈ U(Z[i]) and
γ ∈ Z[i] with

a+ bi = µ · γ2

Notice that −1 = i2 is a square in Z[i], so it can be absorbed into γ and hence there exists γ ∈ Z[i] such
that either a+ bi = γ2 or a+ bi = i · γ2. Fix m,n ∈ Z with γ = n+mi. We then have

γ2 = (n+mi)2 = [(n2 −m2) + 2mn · i]

We now have two cases.

• If a+ bi = γ2, then a = n2 −m2 and b = 2mn.

• If a+ bi = iγ2, then a = −2mn and b = n2 −m2.

Suppose that we also assume that a, b ∈ N+ (we require this for primitive Pythagorean triples, but had
not yet used it to this point). In the first case we can assume that m,n ∈ N+ (by replacing them by their
negatives if both are negative) and that m < n. In the second case, we must have that m and n have different
parities. By replacing the negative value with its absolute value, we obtain a = 2mn and b = n2−m2 where
both m,n ∈ N+ and m < n. From here, it is easy to show that c = m2 + n2 in both cases.
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3.5.2 Squares and Cubes

Suppose that we try to find all integer solutions to

x3 = y2 + 1

The solution (1, 0) is clear, but are there any others? Notice that if y is odd, then y2 + 1 ≡ 2 (mod 4), but
2 is not a cube modulo 4. Thus, we can assume that y is even and hence that x is odd. We can factor the
right-hand side as

x3 = (y + i)(y − i)
We claim that y + i and y − i are relatively prime in Z[i]. As above, it suffices to show that y + i and y − i
have no irreducible common divisor. Suppose then that δ ∈ Z[i] is an irreducible common divisor of y + i
and y − i. We then have that δ divides

(y + i)− (y − i) = 2i

and hence δ | 2 in Z[i]. Since 2 = (−i)(1 + i)2, it follows that we must have δ is a unit multiple of 1 + i, so
in particular 1 + i | δ. This implies that (1 + i) | x3 in Z[i]. Taking norms, we conclude that 2 | x6 in Z, so
x is even, a contradiction. Therefore, we have that y + i and y − i are relatively prime elements of Z[i] such
that the product is a cube. By our theorem, there is a unit µ and a γ ∈ Z[i] with

y + i = µ · γ3

Notice that all of the units of Z[i] are cubes, so there exists γ ∈ Z[i] with y + i = γ3. Fixing m,n ∈ Z with
γ = m+ ni, we then have

y + i = (m+ ni)3 = (m3 − 3mn2) + (3m2n− n3)i

so in Z we have the equations

y = m(m2 − 3n2) and 1 = n(3m2 − n2)

The right-hand equation implies that n = ±1. If n = 1, we get 1 = 3m2 − 1, so 2 = 3m2, a contradiction. If
n = −1, we get 1 = −(3m2− 1), so −3m2 = 0 and hence m = 0. Plugging in these values we see that y = 0,
and hence x = 1. Therefore, (0, 1) is the only solution.

3.6 Ideals and Quotients of the Gaussian Integers

Suppose that I is a nonzero ideal of Z[i]. Since Z[i] is a PID, we know that I is a principal ideal, and hence
we may fix α ∈ Z[i] with α 6= 0 such that I = 〈α〉, so

I = 〈α〉 = {γα : γ ∈ Z[i]}

Now an arbitrary γ ∈ Z[i] can be written in the form γ = c+ di where c, d ∈ Z, so

I = {cα+ d · i · α : c, d ∈ Z}

Viewed geometrically, this is saying that I is the lattice generated by the points α and i · α in Z[i]. Now
i · α is the result of rotating α counterclockwise by 90o. Thus, we are taking two orthogonal vectors α and
i · α and forming all possible integers combinations of these elements. For example, if α = 3, then we get
the lattice generated by 3 and 3i. On the other hand, if α = 2 + 2i, then we the get the lattice generated by
2 + 2i and −2 + 2i, while if α = 1 + 2i, then we get the lattice generated by 1 + 2i and −2 + i.

From the homework, you know that Z[i]/I is a finite ring, and in fact every element of the quotient ring
equals ρ + I for some ρ ∈ Z[i] with N(ρ) < N(α). You did not prove (and it is not true) that these ρ give
distinct cosets. It is an interesting problem to determine the size of Z[i]/I based on a generator for I.
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Proposition 3.6.1. Let n ∈ Z with n 6= 0. We then have that |Z[i]/〈n〉| = n2.

Proof. Let
R = {c+ di ∈ Z[i] : 0 ≤ c < n and 0 ≤ d < n}

Notice that |R| = n2. We claim that the elements of R provide representatives for all of the cosets of I, and
that no two elements of R are in the same coset of I. Let α ∈ Z[i] be arbitrary, and write α = a+ bi where
a, b ∈ Z. Using division in Z, write

a = q1n+ r1 and b = nq2 + r2

where qi, ri ∈ Z and 0 ≤ ri < n (notice this is still possible even if a or b are negative). We then have

(a+ bi)− (r1 + r2i) = (a− r1) + (b− r2)i
= q1n+ q2n · i
= n · (q1 + q2i)

hence
α− (r1 + r2i) ∈ I

and therefore
α+ I = (r1 + r2i) + I

Thus, the elements of R provide representatives for all of the cosets of I.
We now need to show that distinct representatives of R lie in different cosets of I. Suppose that

(c1 + d1i) + I = (c2 + d2i) + I

where ci, di ∈ Z, 0 ≤ ci < n and 0 ≤ di < n. We then have

(c1 − c2) + (d1 − d2)i ∈ I

so we may fix a, b ∈ Z with
n(a+ bi) = (c1 − c2) + (d1 − d2)i

This implies that na = c1 − c2 and nb = d1 − d2. Therefore, n | (c1 − c2) and n | (d1 − d2). Since
−|n| < c1− c2 < |n| and −|n| < d1−d2 < |n|, it follows that c1− c2 = 0 and d1−d2 = 0. Therefore, c1 = d1

and c2 = d2.

Corollary 3.6.2. Let p ∈ N+ be prime with p ≡ 3 (mod 4). We then have that Z[i]/〈p〉 is a field with p2

elements.

Proof. Since p ≡ 3 (mod 4), we know that p is irreducible in Z[i]. Since Z[i] is a PID, this implies that 〈p〉
is a maximal ideal of Z[i]. Therefore, Z[i]/〈p〉 is a field with p2 elements.

Let’s think about the case where I = 〈α〉 but α /∈ Z. If we draw the lattice corresponding to α = 1 + 2i,
then geometrically it appears that

0 i 2i −1 + i −1 + 2i

provide distinct representatives for the quotient Z[i]/〈α〉. These were determined by picking points within
one of the squares formed by the lattice 〈α〉. For a general such α, it can tiresome to find such representatives
and it may not be obvious how many there will be. On the homework, you will show that Z[i]/〈α〉 has N(α)
many elements.



Chapter 4

Field Extensions

4.1 Degree of an Extension

Notation 4.1.1. Let F and K be fields. We often abuse notation and write F ⊆ K to mean that F is a
subfield of K (not merely a subset). We call F ⊆ K a field extension.

Since any intersection of subfields of K is itself a subfield of K, we can make the following definition.

Definition 4.1.2. Let F ⊆ K be a field extension and let α ∈ K.

• The set F [α] is defined to be the smallest subring of K containing F ∪ {α}.

• The set F (α) is defined to be the smallest subfield of K containing F ∪ {α}.

For example, working with the field extension Q ⊆ C, we have that Q[i] = {a+ bi : a, b ∈ Q} because it is
straightforward to check that this set is closed under addition and multiplication. In fact, we showed above
that this set is actually a field and it is clearly the smallest field containing Q ∪ {i} because any field must
be closed under addition and multiplication. We conclude that Q[i] = Q(i). Similarly, it is straightforward
to check that Q[

√
2] = {a+ b

√
2 : a, b ∈ Q}, and that Q[2] is a field, so Q[

√
2] = Q(

√
2).

One issue that is not obvious in the description of Q(
√

2) is the uniqueness of representation. Suppose
that a, b, c, d ∈ Q with a+ b

√
2 = c+ d

√
2. We then have that (a− c) = (d− b)

√
2. Now if d− b 6= 0, then√

2 = a−c
d−b would be rational, a contradiction. Thus, we must have d − b = 0 and hence b = d. Canceling

b
√

2 = d
√

2 from both sides of a+ b
√

2 = c+ d
√

2 we conclude that a = c.
The following proposition gives us a “constructive” way to determine F [α].

Proposition 4.1.3. Suppose that F ⊆ K is a field extension and that α ∈ K. We have

F [α] = {p(α) : p(x) ∈ F [x]}

Proof. Notice that if p(x) ∈ F [x], then p(α) is simply a sum of products of elements of F ∪ {α}, hence we
must have p(α) ∈ F [α]. It follows that {p(α) : p(x) ∈ F [x]} ⊆ F [α]. To show that converse containment,
it suffices to show that {p(α) : p(x) ∈ F [x]} is in fact a subring of K containing F ∪ {α}. Notice that
0, 1 ∈ {p(α) : p(x) ∈ F [x]} by considering the zero polynomial and one polynomial. Given two polynomials
p(x), q(x) ∈ F [x], we have p(α) + q(α) = (p + q)(α) and p(α) · q(α) = (pq)(α). Since F ∪ {α} ⊆ {p(α) :
p(x) ∈ F [x]} by considering the constant polynomials and x ∈ F [x], it follows that {p(α) : p(x) ∈ F [x]} is
indeed a subring of K containing F ∪ {α}. Thus, F [x] ⊆ {p(α) : p(x) ∈ F [x]}.

59
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As we’ve seen in the cases of Q[i] and Q[
√

2], sometimes you can describe F [α] using far less than all
polynomials since in both of those cases we can get away with linear polynomials. However, consider Q[ 3

√
2].

A first guess might be that this ring equals

{a+ b
3
√

2 : a, b ∈ Q}

However, it’s not clear that this is a subring of R because it’s not obvious that 3
√

4 = 3
√

2 · 3
√

2 is in this
set. In fact, it is not, but rather than work through the details now, we will develop general tools in the
next section to figure out how to describe F [α] using a smaller collection of polynomials depending on the
properties of α.

The following result can be proved similarly. Again, sometimes we can get away with far less (like in
Q(i) and Q(

√
2)), but this is certainly enough.

Proposition 4.1.4. Suppose that F ⊆ K is a field extension and that α ∈ K. We have

F (α) = {p(α)
q(α)

: p(x), q(x) ∈ F [x] and q(α) 6= 0}

Suppose that F ⊆ K is a field extension. We can view K as a vector space over the field F where vector
addition is just addition in the field K, and scalar multiplication of a an element of F by an element of K
is just multiplication in the field K. Notice that each of the vector space axioms hold by the properties of a
field.

In the field extension Q ⊆ Q(i), we have that {1, i} is a basis for Q(i) over Q (simply because this set
spans Q(i) over Q as described above, and its linearly independent because if q + ri = 0, then q = 0 and
r = 0).

Definition 4.1.5. Given a field extension F ⊆ K, we let [K : F ] be the dimension of K as a vector space
over F (if there is no finite basis, we let [K : F ] = ∞). The number [K : F ] is called the degree of K over
F .

For example, we have [Q(i) : Q] = 2 because {1, i} is a basis over Q as discussed above. We also have
[Q(
√

2) : Q] = 2 because {1,
√

2} spans Q(
√

2) over Q and one aspect of the uniqueness of representation
was that {1,

√
2} is linearly independent over Q.

4.2 Algebraic and Transcendental Elements

Definition 4.2.1. Suppose that F ⊆ K is a field extension. An element α ∈ K is algebraic over F if there
exists a nonzero polynomial p(x) ∈ F [x] such that p(α) = 0. An element of K which is not algebraic over F
is said to be transcendental over F .

For example,
√

2 is algebraic over Q because it is a root of x2 − 2. In fact, for every n ∈ N+, we have
that n

√
2 is algebraic over Q since it is a root of xn − 2. We have that i is algebraic over Q because it is a

root of x2 + 1. Every q ∈ Q is algebraic over Q since it is a root of x− q.
For a more interesting example, consider α =

√
2 +
√

3. We claim that α is algebraic over Q. To find a
polynomial with rational coefficients of which α is a root, we first calculate

α2 = (
√

2 +
√

3)2 = 2 + 2 ·
√

2 ·
√

3 + 3 = 5 + 2
√

6

so
α2 − 5 = 2

√
6

Squaring both sides we conclude that
α4 − 10α2 + 25 = 24
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and hence
α4 − 10α2 + 1 = 0

Therefore, α =
√

2 +
√

3 is a root of the polynomial x4 − 10x2 + 1 ∈ Q[x]. In fact, we will see later through
a more sophisticated argument that the sum, product, and quotient of algebraic elements is itself algebraic,
i.e. the set of elements of K which are algebraic over F forms a subfield of K.

At this point, it is not obvious that there are elements of C (or even R) which are transcendental over Q.
It is possible to prove that such elements exist by cardinality considerations, but it is also possible to prove
that certain important analytic numbers are transcendental. In particular, both π and e are transcendental
over Q, though proving these requires some nontrivial analytic work. We will (unfortunately) not pursue
that here.

Definition 4.2.2. Suppose that F ⊆ K is a field extension. Given α ∈ K, we let

Iα = {p(x) ∈ F [x] : p(α) = 0}

Proposition 4.2.3. Suppose that F ⊆ K is a field extension. For any α ∈ K, the set Iα is a proper ideal
of F [x].

Proof. Clearly 0 ∈ Iα. If p(x), q(x) ∈ Iα, then (p+ q)(α) = p(α) + q(α) = 0 + 0 = 0, so p(x) + q(x) ∈ Iα. If
p(x) ∈ Iα and f(x) ∈ F [x], then (fp)(α) = f(α) · p(α) = f(α) · 0 = 0, so f(x) · p(x) ∈ Iα. Combining this
all, we conclude that Iα is an ideal of F [x]. Notice that Iα 6= F [x] because 1 /∈ Iα.

You can also prove the preceding proposition in the following way. Consider the ring homomorphism
Evα : F [x] → K given by Evα(p(x)) = p(α). Notice that ker(Evα) = Iα, hence Iα is an ideal of F [α]
(because kernels of ring homomorphisms are always ideals). Moreover, by Proposition 4.1.3, we have that
range(Evα) = F [α], so by the First Isomorphism Theorem, we conclude that

F [x]/Iα ∼= F [α]

Notice that an element α ∈ K is algebraic over F if and only if Iα 6= {0}. Recall that if F is a field,
then F [x] is a PID (because it is a Euclidean Domain). Hence, if F ⊆ K is a field extension, then for every
α ∈ K, the ideal Iα is principal. If α ∈ K is algebraic over F , then Iα 6= {0}, so any generator of Iα is
nonzero. Recall that generators of an ideal are unique up to associates, so there is a unique monic generator
of Iα.

Definition 4.2.4. Suppose that F ⊆ K is a field extension and that α ∈ K is algebraic over F . Since F [x]
is a PID, there exists a unique monic polynomial m(x) ∈ F [x] with Iα = 〈m(x)〉. The unique such monic
polynomial is called the minimal polynomial of α over F .

Since Iα = 〈m(x)〉 where m(x) is the minimal polynomials of α over F , we can rewrite the above ring
isomorphism as:

F [x]/〈m(x)〉 ∼= F [α]

Proposition 4.2.5. Suppose that F ⊆ K is a field extension and that α ∈ K is algebraic over F . The
minimal polynomial m(x) of α over F is irreducible in F [x].

Proof. Let m(x) ∈ F [x] be the minimal polynomial of α over F , so Iα = 〈m(x)〉. Suppose that p(x), q(x) ∈
F [x] with m(x) = p(x)q(x). We then have

0 = m(α) = p(α) · q(α)

Since F is a field, it is an integral domain, and hence either p(α) = 0 or q(α) = 0. Suppose that p(α) = 0.
We then have p(x) ∈ Iα = 〈m(x)〉, and hence m(x) | p(x). Fixing f(x) ∈ F [x] with m(x)f(x) = p(x), we
then have

m(x) = p(x)q(x) = m(x)f(x)q(x)
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so as F [x] is an integral domain, it follows that 1 = f(x)q(x) and so q(x) is a unit. Similarly, if q(α) = 0,
then p(x) is a unit. It follows that m(x) is irreducible.

Proposition 4.2.6. Suppose that F ⊆ K is a field extension and that α ∈ K is algebraic over F . If
p(x) ∈ F [x] is a monic irreducible polynomial with p(α) = 0, then p(x) is the minimal polynomial of α over
F .

Proof. Let m(x) ∈ F [x] be the minimal polynomial of α over F . Since p(α) = 0, we have that p(x) ∈ Iα =
〈m(x)〉, so m(x) | p(x) in F [x]. We are assuming that p(x) is irreducible, so either m(x) is a unit or m(x) is
an associate of p(x). The former is impossible because Iα is a proper ideal of F [x] (recall that 1 /∈ Iα), hence
m(x) is an associate of p(x). The units of F [x] are just the constant polynomials, so as both m(x) and p(x)
are monic, it follows that p(x) = m(x).

For example, the minimal polynomial of i over Q is x2 + 1 (this polynomial does indeed have i as a root,
and it is irreducible because it has degree 2 and no roots in Q). Similarly, the minimal polynomial of

√
2

over Q is x2 − 2. How about the minimal polynomial of n
√

2 over Q for some n > 2? Clearly, n
√

2 is a root
of the polynomial xn− 2. In fact, this polynomial is irreducible which can be seen by Eisenstein’s Criterion,
so the minimal polynomial of n

√
2 over Q is indeed xn − 2.

Proposition 4.2.7. Suppose that F ⊆ K is a field extension and that α ∈ K is algebraic over F . Let
m(x) ∈ F [x] be the minimal polynomial of α over F , and let n = deg(m(x)). We then have

F [α] = {0} ∪ {h(α) : h(x) ∈ F [x] and deg(h(x)) < n}

Proof. By Proposition 4.1.3, we know that F [α] = {p(α) : p(x) ∈ F [x]}, so clearly the set on the right
is contained in F [α]. Suppose now that p(x) ∈ F [x] is arbitrary. Since F [x] is a Euclidean Domain with
Euclidean function equal to the degree map, there exists q(x), r(x) ∈ F [x] with p(x) = q(x)m(x) + r(x) and
either r(x) = 0 or deg(r(x)) < deg(m(x)). We then have that

p(α) = q(α)m(α) + r(α) = q(α) · 0 + r(α) = r(α)

Thus, p(α) ∈ {0} ∪ {h(α) : h(x) ∈ F [x] and deg(h(x)) < n}. It follows that F [α] is a subset of the set on
the right. The result follows.

Proposition 4.2.8. If F ⊆ K is a field extension and α ∈ K is algebraic over F , then F (α) = F [α].

Proof. We need only show that F [α] is a field. Let m(x) be the minimal polynomial of α over F , and let
n = deg(m(x)). We give two proofs.

The slick proof is to recall from above that

F [x]/〈m(x)〉 ∼= F [α]

Now m(x) is irreducible by Proposition 4.2.5, so 〈m(x)〉 is a maximal ideal by Proposition 3.2.12. It follows
that F [x]/〈m(x)〉 is a field, so the isomorphic ring F [α] must be a field.

We now give a more constructive proof (which is really just unwrapping the “slick” proof above into
the various pieces). Let β ∈ F [α] with β 6= 0. We need to show that β−1 ∈ F [α]. We know that F [α] =
{0} ∪ {h(α) : h(x) ∈ F [x] and deg(h(x)) < n}, so we may fix a polynomial h(x) ∈ F [x] with deg(h(x)) < n
and β = h(α). Notice that m(x) - h(x) in F [x] because h(x) 6= 0 and deg(h(x)) < n = deg(m(x)). Since
m(x) is irreducible, it follows that gcd(h(x),m(x)) = 1. Fix polynomials p(x), q(x) ∈ F [x] with

p(x)h(x) + q(x)m(x) = 1

We then have that
p(α)h(α) + q(α)m(α) = 1

so since m(α) = 0, we conclude that p(α)h(α) = 1. Since h(α) = β and p(α) ∈ F [α], we have shown that
β−1 = p(α) ∈ F [α]. Therefore, F [α] is a field.
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Theorem 4.2.9. Suppose that F ⊆ K is a field extension and that α ∈ K is algebraic over F . Let m(x) ∈
F [x] be the minimal polynomial of α over F , and let n = deg(m(x)). We then have that {1, α, α2, . . . , αn−1}
is a basis for F (α) over F . Hence, [F (α) : F ] is the degree of the minimal polynomial of α over F .

Proof. Given any h(x) ∈ F [x] with deg(h(x)) < n, write h(x) = cn−1x
n−1 + · · ·+c1x+c0 with ci ∈ F (where

possibly some ci are 0), and notice that

h(α) = cn−1α
n−1 + · · ·+ c1α+ c0

so h(α) is in the span of the set {1, α, α2, . . . , αn−1}. Since we have just shown that

F (α) = F [α] = {0} ∪ {h(α) : h(x) ∈ F [x] and deg(h(x)) < n}

it follows that {1, α, α2, . . . , αn−1} does indeed span F (α) over F . We now need only show that the set
{1, α, α2, . . . , αn−1} is linearly independent over F . Suppose that ci ∈ F with cn−1α

n−1 + · · ·+ c1α+ c0 = 0.
Letting h(x) = cn−1x

n−1 + · · · + c1x + c0, we then have that h(α) = 0, so h(x) ∈ 〈m(x)〉. Since either
h(x) = 0 or deg(h(x)) < n and the latter is impossible because deg(m(x)) = n, we conclude that h(x) = 0.
Therefore, ci = 0 for all i. It follows that the set {1, α, α2, . . . , αn−1} is linearly independent and hence a
basis for F (α) over F .

Proposition 4.2.10. Suppose that F ⊆ K is a field extension and that α ∈ K is transcendental over F .

1. The set {1, α, α2, α3, . . . } is linearly independent over F .

2. [F (α) : F ] =∞.

3. F [x] ∼= F [α].

4. F [α] ( F (α).

Proof. Suppose that n ∈ N and ai ∈ F are such that

a0 + a1α+ a2α
2 + · · ·+ anα

n = 0

We then have that α is a root of the polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

Since α is transcendental over F , we must have that p(x) is the zero polynomial, hence we must have ai = 0
for all i. Therefore, {1, α, α2, α3, . . . } is linearly independent over F . Since we have found an infinite subset
of F [α] that is linearly independent over F , we can conclude that [F (α) : F ] =∞.

We now prove the third statement. Recall the map Evα : F [x] → K given by Evα(p(x)) = p(α) is such
that ker(Evα) = Iα and range(Evα) = F [α]. Since α is transcendental over F , we have ker(Evα) = Iα = {0}.
Since Evα is a ring homomorphism with trivial kernel, we must have that Evα is injective. Using the fact
that range(Evα) = F [α], it follows that F [x] ∼= F [α] via the map Evα.

The fourth statement now follows because F [α] ∼= F [x], so F [α] is not a field because F [x] is not a
field.

Corollary 4.2.11. Let F ⊆ K be a field extension and let α ∈ K. We then have that α is algebraic over F
if and only if F [α] is finitely generated over F (i.e. if and only if F [α] can be spanned by a finite set using
coefficients from F ).

Proof. Suppose that α is algebraic over F . Let m(x) ∈ F [x] be the minimal polynomial of α over F . Letting
n = deg(m(x)), we then know that F (α) = F [α] is generated by {1, α, α2, . . . , αn−1} over F .

Suppose that α is transcendental over F . Although F [α] is not a field, we can still view it as a vector
space over F (there is no notion of “inverse” of a vector in a vector space). If F [α] is finitely generated over
F , then it would have a finite spanning set. From basic linear algebra, if X is a finite spanning set and
|Y | > |X|, then Y must be linearly dependent over F . However, we know that F [α] has an infinite linearly
independent set, namely {1, α, α2, α3, . . . }.
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4.3 Irreducible Polynomials

Proposition 4.3.1. Let F be a field and let p(x) ∈ F [x]. An element a ∈ F is a root of p(x) if and only if
x− a divides p(x) in F [x]

Proof. Suppose first that x− a divides p(x) in F [x]. Fix a polynomial q(x) ∈ F [x] with p(x) = (x− a)q(x).
We then have that

p(a) = (a− a)q(a) = 0 · q(a) = 0

so a is a root of p(x).
Suppose conversely that a is a root of p(x). Since F [x] is a Euclidean domain with Euclidean function

equal to the degree map, we may fix q(x), r(x) ∈ F [x] with

p(x) = q(x)(x− a) + r(x)

and either r(x) = 0 or deg(r(x)) < deg(x − a). Now deg(x − a) = 1, so we have have that r(x) = c is a
constant polynomial. We then have

0 = p(a) = q(a)(a− a) + r(a) = q(a) · 0 + c = c

so r(x) is the zero polynomial. It follows that p(x) = q(x)(x− a), so x− a divides p(x) in F [x].

Proposition 4.3.2. Let F be a field and let f(x) ∈ F [x] be a nonzero polynomial with deg(f(x)) ≥ 2. If
f(x) has a root in F , then f(x) is not irreducible in F [x].

Proof. If f(x) has a root a, then (x− a) | f(x). Fixing g(x) ∈ F [x] with f(x) = (x− a) · g(x). We then have

deg(f(x)) = deg(x− a) + deg(g(x)) = 1 + deg(g(x))

so deg(g(x)) = deg(f(x)) − 1 ≥ 1. Now the units of F [x] are the nonzero constants, so we have factored
f(x) as the product of two nonunits, and hence f(x) is not irreducible in F [x].

Unfortunately, the test for the existence of roots is not in general sufficient to guarantee that a polynomial
is irreducible, but it is enough in the special case where the polynomial has degree either 2 or 3.

Proposition 4.3.3. Let F be a field and let f(x) ∈ F [x] be a polynomial with either deg(f(x)) = 2 or
deg(f(x)) = 3. If f(x) has no roots in F [x], then f(x) is irreducible in F [x].

Proof. We prove the contrapositive. Suppose conversely that f(x) ∈ F [x] is not irreducible. Write f(x) =
g(x)h(x) where g(x), h(x) ∈ F [x] are nonunits. We have

deg(f(x)) = deg(g(x)) + deg(h(x))

Now g(x) and h(x) are not units, so they each have degree at least 1. Since deg(f(x)) ∈ {2, 3}, it follows
that at least one of g(x) or h(x) has degree equal to 1. Suppose without loss of generality that deg(g(x)) = 1
and write g(x) = ax+ b where a, b ∈ F with a 6= 0. We then have

f(−ba−1) = g(−ba−1) · h(−ba−1)

= (a · (−ba−1) + b) · h(−ba−1)

= (−b+ b) · h(−ba−1)

= 0 · h(−ba−1)
= 0

so −ba−1 is a root of f(x).
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For example, consider the polynomial f(x) = x3 − 2 over Q. We know that f(x) has no roots in Q
because ± 3

√
2 are not rational (use the Fundamental Theorem of Arithmetic to prove this if you have have

not seen it). Thus, f(x) is irreducible over Q. Notice that f(x) is not irreducible when viewed as an element
of R[x] because it has a root in R. Moreover, no polynomial in R[x] of odd degree is irreducible because
every such polynomial has a root (this uses the Intermediate Value Theorem because as x → ±∞, on one
side you must have f(x)→∞ and on the other you must have f(x)→ −∞). In fact, it turns out that every
irreducible polynomial over R has degree either 1 or 2, though this is far from obvious at this point since
there are certainly polynomials of degree 4 with no root, such as x4 + 1.

Proposition 4.3.4. Let R be a ring and let I be an ideal of R. Define a function ψ : R[x] → (R/I)[x] by
letting

ψ(anxn + an−1x
n−1 + · · ·+ a1x+ a0) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0

The function ψ is a surjective ring homomorphism with kernel I[x], hence

R[x]/I[x] ∼= (R/I)[x]

Proof. This is all just direct computation.

Lemma 4.3.5. Suppose that g(x), h(x) ∈ Z[x] and that p ∈ Z is a prime which divides all coefficients of
g(x) · h(x). We then have that either p divides all coefficients of g(x), or p divides all coefficients of h(x).

Proof 1 - Elementary Proof. Let g(x) =
∑
i bix

i, let h(x) =
∑
i cix

i, and let g(x)h(x) =
∑
i aix

i. We are
supposing that p | ai for all i. Suppose the p - bi for some i and also that p - ci for some i (possibly different).
Let k be least such that p - bk, and let ` be least such that p - c`. Notice that

ak+` =
k+∑̀
i=0

bick+`−i = bkc` + (
k−1∑
i=0

bick+`−i) + (
k+∑̀
i=k+1

bick+`−i)

hence

bkc` = ak+` − (
k−1∑
i=0

bick+`−i)− (
k+∑̀
i=k+1

bick+`−i)

Now if 0 ≤ i ≤ k−1, then p | bi by choice of k, hence p | bick+`−i. Also, if k+1 ≤ i ≤ k+`, then k+`− i < `,
so p | ck+`−i by choice of `, hence p | bick+`−i. Since p | ak+` by assumption, it follows that p divides every
summand on the right hand side. Therefore, p divides the right hand side, and thus p | bkc`. Since p is
prime, it follows that either p | bk or p | c`, but both of these are impossible by choice of k and `. Therefore,
it must be the case that either p | bn for all n, or p | cn for all n.

Proof 2 - Algebraic Proof. Passing to the quotient in Z/pZ, we have that g(x) · h(x) = 0 in (Z/pZ)[x], hence

g(x) · h(x) = 0

Since Z/pZ is an integral domain, we know that the (Z/pZ)[x] is an integral domain, and hence either
g(x) = 0 or h(x) = 0. In the former case, every coefficient of g(x) is divisible by p, while in the latter every
coefficient of h(x) is divisible by p.

Proposition 4.3.6 (Gauss’ Lemma). Suppose that f(x) ∈ Z[x] and that g(x), h(x) ∈ Q[x] with f(x) =
g(x)h(x). There exist polynomials g∗(x), h∗(x) ∈ Z[x] such that f(x) = g∗(x)h∗(x) and both deg(g∗(x)) =
deg(g(x)) and deg(h∗(x)) = deg(h(x)). In fact, there exist nonzero s, t ∈ Q with

• f(x) = g∗(x)h∗(x)
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• g∗(x) = s · g(x)

• h∗(x) = t · h(x)

Proof. If each of the coefficients of g(x) and h(x) happen to be integers, then we are happy. Suppose not.
Let a ∈ Z be the least common multiple of the denominators of the coefficients of g, and let b ∈ Z be the
least common multiple of the denominators of the coefficients of h. Let d = ab. Multiply both sides of
f(x) = g(x)h(x) through by d to “clear denominators” gives

d · f(x) = (a · g(x)) · (b · h(x))

where each of the three factors d · f(x), a · g(x), and b · h(x) is a polynomial in Z[x]. We have at least one
of a > 1 or b > 1, hence d = ab > 1.

Fix a prime divisor p of d. We then have that p divides all coefficients of d · f(x), so by the previous
lemma either p divides all coefficients of a · g(x), or p divides all coefficients of b · h(x). In the former case,
we have

d

p
· f(x) = (

a

p
· g(x)) · (b · h(x))

where each of the three factors is a polynomial in Z[x]. In the latter case, we have

d

p
· f(x) = (a · g(x)) · ( b

p
· h(x))

where each of the three factors is a polynomial in Z[x]. Now if d
p = 1, then we are done by letting g∗(x)

be the first factor and letting h∗(x) be the second. Otherwise, we continue the argument by dividing out
another prime factor of dp from all coefficients of one of the two polynomials. Continue until we have handled
all primes which occur in a factorization of d. Formally, you can do induction on d.

An immediate consequence of Gauss’ Lemma is the following, which greatly simplifies the check for
whether a given polynomial with integer coefficients is irreducible in Q[x].

Corollary 4.3.7. Let f(x) ∈ Z[x]. If there does not exist nonconstant polynomials g(x), h(x) ∈ Z[x] with
f(x) = g(x) · h(x), then f(x) is irreducible in Q[x]. Furthermore, if f(x) is monic, then it suffices to show
that no such monic g(x) and h(x) exist.

Proof. The first part is immediate from Gauss’ Lemma. Now suppose that f(x) ∈ Z[x] is monic. Suppose
that g(x), h(x) ∈ Z with f(x) = g(x)h(x). Notice that the leading term of f(x) is the product of the leading
terms of g(x) and h(x), so as f(x) is monic and all coefficients are in Z, either both g(x) and h(x) are monic
or both have leading terms −1. In the latter case, we can multiply both through by −1 to get a factorization
into monic polynomials in Z[x] of the same degree.

Proposition 4.3.8. Suppose that f(x) ∈ Z[x] is monic and p ∈ Z is prime. Suppose that f(x) is an
irreducible polynomial in (Z/pZ)[x]. We then have that f(x) is irreducible in Q[x].

Proof. We prove the contrapositive. Suppose that f(x) is reducible in Q[x]. By Gauss’ Lemma, there exist
nonconstant polynomials g(x), h(x) ∈ Z[x] with f(x) = g(x)h(x). Passing to the quotient and using the
above isomorphism, it follows that

f(x) = g(x) · h(x)

in the ring (Z/pZ)[x]. Now deg(f(x)) = deg(f(x)) because f(x) is monic. Since deg(g(x)) ≤ deg(g(x)) and
deg(h(x)) ≤ deg(h(x)), we have shown that f(x) can be factored into two polynomials of smaller degree in
(Z/pZ)[x], so f(x) is reducible there.
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Theorem 4.3.9 (Eisenstein’s Criterion). Suppose that f(x) ∈ Z[x] is monic and write

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

If there exists a prime p ∈ Z such that

• p | ai for 0 ≤ i ≤ n− 1

• p2 - a0

then f(x) is irreducible in Q[x].

Proof 1 - Elementary Proof. Fix such a prime p. We use Corollary 4.3.7. Suppose that g(x), h(x) ∈ Z[x] are
not constant polynomials with f(x) = g(x)h(x). We then have

n = deg(f(x)) = deg(g(x)) + deg(h(x))

Since we are assuming that g(x) and h(x) are not constant, they each have degree at least 1, and so by the
above equality they both have degree at most n− 1.

Let g(x) =
∑
i bix

i, let h(x) =
∑
i cix

i. We have a0 = b0c0, so since p | a0 and p is prime, either p | b0
or p | c0. Furthermore, since p2 - a0 by assumption, we can not have both p | b0 and p | c0. Without loss of
generality (by switching the roles of g(x) and h(x) if necessary), suppose that p | b0 and p - c0.

We now prove that p | bk for 0 ≤ k ≤ n − 1 by (strong) induction. Suppose that we have k with
0 ≤ k ≤ n− 1 and we know that p | bi for 0 ≤ i < k. Now

ak = bkc0 + bk−1c1 + · · ·+ b1ck−1 + b0ck

and hence
bkc0 = ak − bk−1c1 − · · · − b1ck−1 − b0ck

By assumption, we have p | ak, and by induction we have p | bi for 0 ≤ i < k. It follows that p divides every
term on the right-hand side, so p | bkc0. Since p is prime and p - c0, it follows that p | bk.

Thus, we have shown that p | bk for 0 ≤ k ≤ n− 1. Now we have

an = bnc0 + bn−1c1 + · · ·+ b1cn−1 + b0cn

= bn−1c1 + · · ·+ b1cn−1 + b0cn

where the last line follows from the fact that bn = 0 (since we are assuming deg(g(x)) < n). Now we know
p | bk for 0 ≤ k ≤ n − 1, so p divides every term on the right. It follows that p | an, contradicting our
assumption. Therefore, by Corollary 4.3.7, f(x) is irreducible in Q[x].

Proof 2 - Algebraic Proof. Fix such a prime p. We use Corollary 4.3.7. Suppose that g(x), h(x) ∈ Z[x] are
nonconstant with f(x) = g(x)h(x). Passing to the quotient Z/pZ and using the above isomorphism, it
follows that

f(x) = g(x) · h(x)

in the ring (Z/pZ)[x]. Now we have p | ai for 0 ≤ i ≤ n − 1, so f(x) = xn in (Z/pZ)[x]. Thus, in the ring
(Z/pZ)[x], we have

xn = g(x) · h(x)

Now each of g(x), h(x) ∈ Z[x] have degree at most n−1, so this is certainly true of g(x), h(x) ∈ (Z/pZ)[x] as
well. We know that (Z/pZ)[x] is a Euclidean domain, hence a UFD, so as the polynomial x is irreducible in
(Z/pZ)[x], it follows that the only divisors of xn in (Z/pZ)[x] are the polynomials uxk where u is a nonzero
constant (unit) and 0 ≤ k ≤ n. Thus, each of g(x) and h(x) are of this form, and since neither can be
constant polynomials (since their product has degree n and each has degree at most n − 1), it follows that
each of g(x) and h(x) have constant term 0. Thus, the constant terms of g(x) and h(x) are each divisible by
p. It follows that the constant term of f(x) is divisible by p2 which contradicts our assumption. Therefore,
f(x) has no nontrivial factorization in Z[x], and hence none in Q[x] either by Gauss’ Lemma.
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Example 4.3.10. Let m ≥ 2 be a squarefree integer (so no nontrivial square divides m, i.e. all primes in
the factorization of m are distinct). Let n ≥ 2. The polynomial xn − m is irreducible in Q[x] because it
satisfies Eisenstein’s Criterion with p chosen to be any prime which divides m. Thus, xn−m is the minimal
polynomial of n

√
m over Q.

Corollary 4.3.11. If m ≥ 2 is a squarefree integer and n ≥ 2, then [Q( n
√
m) : Q] = n.

4.4 Finite and Algebraic Extensions

Definition 4.4.1. Let F ⊆ K be a field extension.

• We say that the extension F ⊆ K is finite if [K : F ] <∞.

• We say that the extension F ⊆ K is algebraic if every α ∈ K is algebraic over F .

Theorem 4.4.2. Every finite extension F ⊆ K is algebraic.

Proof. Suppose that [K : F ] is finite and let n = [K : F ]. Let α ∈ K. Now the set {1, α, α2, . . . , αn} is a set
of n + 1 vectors in the vector space K over F , so as dimF K = n, it follows that this set must be linearly
dependent over F . Therefore, there exists ci ∈ F not all zero such that

cnα
n + cn−1α

n−1 + · · ·+ c1α+ c0 = 0

Letting p(x) = cnx
n + cn−1x

n−1 + · · · + c1x + c0 ∈ F [x], we have that p(x) is a nonzero polynomial and
p(α) = 0, so α is algebraic over F . Since α ∈ K was arbitrary, the result follows.

Notice that if F ⊆ K and α ∈ K is algebraic over F , then the field extension [F (α) : F ] is finite. Thus,
every element of F (α) is algebraic over F .

Definition 4.4.3. Let F ⊆ K be a field extension and let α1, α2, . . . , αn ∈ K. The set F (α1, α2, . . . , αn) is
defined to be the smallest subfield of K containing F ∪ {α1, α2, . . . , αn}.

It is straightforward to check that
F (α, β) = (F (α))(β)

so we can get F (α1, α2, . . . , αn) by repeatedly adjoining one element.

Theorem 4.4.4. Suppose that F ⊆ K ⊆ L are field extensions. If both [L : K] and [K : F ] are finite, then
so is [L : F ] and we have

[L : F ] = [L : K] · [K : F ]

If either [L : K] or [K : F ] is infinite, then so is [L : F ].

Proof. If [L : K] is infinite, then there exists an infinite subset of L which is linearly independent over K,
and this set is then trivially linearly independent over F , so [L : F ] is infinite. If [K : F ] is infinite, then
there exists an infinite subset of K which is linearly independent over F , and since K ⊆ L, this is an infinite
subset of L which is linearly independent over F , so [L : F ] is infinite.

Suppose then that m = [L : K] and n = [K : F ] are both finite. Let {β1, β2, . . . , βm} be a basis of L over
K, and let {α1, α2, . . . , αn} be a basis of K over F . We claim that the set

Z = {αiβj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a basis for L over F . Let γ ∈ L. Since {β1, β2, . . . , βm} is a basis of L overK, there exists d1, d2, . . . , dm ∈ K
with

γ = d1β1 + d2β2 + · · ·+ dmβm
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Now each dj ∈ K, so as {α1, α2, . . . , αn} is a basis of K over F , there exists c1j , c2j , . . . , cnj ∈ F with

dj = c1jα1 + c2jα2 + · · ·+ cnjαn

We then have

γ =
m∑
j=1

djβj

=
m∑
j=1

(
n∑
i=1

cijαi)βj

=
m∑
j=1

n∑
i=1

cijαiβj

Since γ ∈ L was arbitrary, it follows that the set Z spans L over F .
We now need to check that Z is linearly independent over F . Suppose that cij ∈ F satisfy

m∑
j=1

n∑
i=1

cijαiβj = 0

We then have
m∑
j=1

(
n∑
i=1

cijαi)βj

so as
∑n
i=1 cijαi ∈ K and {β1, β2, . . . , βm} is linearly independent over K, we can conclude that

∑n
i=1 cijαi =

0 for each j. Now each cij ∈ F and {α1, α2, . . . , αn} is linearly independent over F , so we can conclude that
each cij = 0. It follows that Z is linearly independent over F .

Combining the above, we have shown that Z ⊆ L spans L over F and is linearly independent over F , so
Z is a basis of L over F . Therefore,

[L : F ] = |Z| = mn = [L : K] · [K : F ]

Corollary 4.4.5. Let F ⊆ K. If α1, α2, . . . , αn ∈ K are all algebraic over F , then F (α1, α2, . . . , αn) is a
finite (and hence algebraic) extension of F .

Proof. We have
F ⊆ F (α1) ⊆ F (α1, α2) ⊆ · · · ⊆ F (α1, α2, . . . , αn)

Each particular extension is finite, so the tower is finite.

Proposition 4.4.6. Let F ⊆ K be a field extension. Let

A = {α ∈ K : α is algebraic over F}

We then have that A is subfield of K. Furthermore, A is an algebraic extension of F .

Proof. Suppose that α, β ∈ A. We then have that α and β are both algebraic over F , so [F (α, β) : F ] is
finite. Therefore, every element of F (α, β) is algebraic over F . Since α + β, α − β, α · β, and α

β (if β 6= 0)
are all elements of F (α, β), it follows that each of these are algebraic over F . Thus, α+ β, α− β, α · β, and
α
β (if β 6= 0) are all in A.
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As an example, consider L = Q(
√

2, i). Notice that if K = Q(
√

2), then we have Q ≺ K ≺ L. Now
[K : Q] = 2 and K 6= L, so [L : K] 6= 1. It follows that [L : K] = 2, and thus [L : Q] = 4. A basis is
{1,
√

2, i,
√

2i}. Now we claim that L = Q(
√

2 + i). It can be shown that
√

2 + i is a root of the polynomial
x4 − 2x2 + 9. It is possible to show that is irreducible directly, but it is painful. If you do this, then you
know that [Q(

√
2 + i) : Q] = 4, so [Q(

√
2, i) : Q(

√
2 + i)] = 1, so they are equal.

We can also argue from the other direction. Notice that

(
√

2 + i)3 = (
√

2)3 + 3 · (
√

2)2 · i+ 3 ·
√

2 · i2 + i3

= 2
√

2 + 6i− 3
√

2− i

= −
√

2 + 5i

It follows that
(
√

2 + i)3 + (
√

2 + i) = 6i

and therefore
i =

1
6

(
√

2 + i)3 +
1
6

(
√

2 + i)

Thus, i ∈ Q(
√

2 + i) and it follows that
√

2 ∈ Q(
√

2 + i) as well. Hence, Q(
√

2 + i) = Q(
√

2, i), and so
[Q(
√

2 + i) : Q] = 4. Therefore, the fourth degree polynomial x4 − 2x2 + 9 must be the minimal polynomial
of
√

2 + i over Q.

Proposition 4.4.7. Suppose that F ⊆ E ⊆ K and that E is algebraic over F . If α ∈ K and α is algebraic
over E, then α is algebraic over F .

Proof. Suppose α ∈ K and α is algebraic over E. Fix a polynomial p(x) ∈ E[x] with p(α) = 0. Write

p(x) = βnx
n + βn−1x

n−1 + · · ·+ β1x+ β0 ∈ E[x]

where each βi ∈ E. Since E is algebraic over F , we know that each βi is algebraic over F . Therefore, the
field L = F (β1, β2, . . . , βn) is such that [L : F ] is finite. Notice that p(x) ∈ L[x], so α is algebraic over L and
thus [L(α) : L] is finite. It follows that [L(α) : F ] is finite, and therefore α ∈ L(α) is algebraic over F .

For example, any root of the polynomial

( 4
√

5)x9 − (
√

2 + 6i)x5 + (e2πi/5 · 3
√

2)

must be algebraic over Q

Corollary 4.4.8. Suppose that F ⊆ E ⊆ K. If E is algebraic over F and K is algebraic over E, then K is
algebraic over F .

4.5 Algebraic Integers

Definition 4.5.1. A number field is a field K such that Q ⊆ K ⊆ C with the property that [K : Q] is finite.

Suppose that we have a number field K. As [K : Q] is finite, we know that every element of K is algebraic
over Q. Since we have extended the field Q to a slightly larger field K, we might think that the analogue
of the integers in K will be a slightly larger ring than Z. The fundamental question is how to define this
“ring of integers” in K. If there exists α ∈ C with K = Q(α), it is very natural to expect that the proper
analogue would be

Z[α] = {p(α) : p(x) ∈ Z[x]}
After all, this is easily seen to be the smallest subring of Q(α) containing Z ∪ {α}. Furthermore, it matches
our expectation that the Gaussian Integers Z[i] are the correct analogue of the “integers” in the number field
Q(i). However, it is problematic for a few reasons, as we now explore.
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Lemma 4.5.2. Suppose that F ⊆ K is a field extension and let α, β ∈ K.

• α ∈ F (β) if and only if F (α) ⊆ F (β).

• We have both α ∈ F (β) and β ∈ F (α) if and only if F (α) = F (β).

Proof. If F (α) ⊆ F (β), then since α ∈ F (α) we clearly have α ∈ F (β). Conversely, if α ∈ F (β), then F (β)
is a subfield of K containing F ∪ {α}, so as F (α) is the smallest such subfield it follows that F (α) ⊆ F (β).
The second statement is immediate from the first.

Consider the field Q(
√
−3) and Q(ζ) where ζ = e2πi/3. Notice that

√
−3 is algebraic over Q with minimal

polynomial x2 +3 (this is irreducible over Q because it has no roots in Q). Now ζ is a root of the polynomial
x3 − 1. However, this polynomial is not irreducible over Q because

x3 − 1 = (x− 1)(x2 + x+ 1)

Since ζ is a root of x3−1, it must be a root of one of the polynomials on the right, and since ζ 6= 1, it follows
that ζ is a root of x2 + x+ 1. One can check that this polynomial has no rational roots (or even real root),
so it is irreducible in Q[x] and hence the minimal polynomial of ζ over Q. Now using Euler’s Formula

eiθ = cos θ + i sin θ

we see that

ζ = e2πi/3

= cos(2π/3) + i sin(2π/3)

= −1
2

+ i

√
3

2

= −1
2

+
√
−3
2

With this in hand, we claim that Q(
√
−3) = Q(ζ). To see this, notice that the above equality shows that

ζ ∈ Q(
√
−3) and hence Q(ζ) ⊆ Q(

√
−3). Since

√
−3 = 2ζ + 1

we also have
√
−3 ∈ Q(ζ). Therefore Q(

√
−3) = Q(ζ).

Definition 4.5.3. Given α ∈ C, we let Z[α] be the smallest subring of C containing α (notice that any
subring contains 1, and hence all of Z). In other words,

Z[α] = {p(α) : p(x) ∈ Z[x]}

Since Q(
√
−3) = Q(ζ), should the “integers” of this field be

Z[
√
−3] = {a+ b

√
−3 : a, b ∈ Z}
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or the larger ring

Z[ζ] = {a+ bζ : a, b ∈ Z}

= {a+ b(−1
2

+
√
−3
2

) : a, b ∈ Z}

= {(a− b

2
) +

b

2
√
−3 : a, b ∈ Z}

= {2a− b
2

+
b

2
√
−3 : a, b ∈ Z}

= {c+ d
√
−3 : c, d ∈ Z} ∪ { c

2
+
d

2
√
−3 : c, d ∈ Z both odd}

= Z[
√
−3] ∪ { c

2
+
d

2
√
−3 : c, d ∈ Z both odd}

or something else entirely?
The answer to this question is not immediately obvious. Notice that every element of K = Q(

√
−3) =

Q(ζ) is algebraic over Q, so is the root of some nonzero polynomial in Q[x]. A first guess for the definition of an
“algebraic integer” (rather than just an algebraic number) would be that it is a root of nonzero polynomial
in Z[x]. However, by multiplying a polynomial in Q[x] through by the product of the denominators of
coefficients, it is easy to see that every algebraic α ∈ C is a root of a nonzero polynomial in Z[x]. Thus,
simply forcing the coefficients to be elements of Z does not change anything.

Definition 4.5.4. Let α ∈ C. We say that α is an algebraic integer if α is the root of some nonzero monic
polynomial in Z[x].

Example 4.5.5. The following are examples of algebraic integers

• Every n ∈ Z is an algebraic integer because it is a root of x− n.

•
√

2 is an algebraic integer because it is a root of x2 − 2.

• i is an algebraic integer because it is a root of x2 + 1.

• For every n ≥ 2, the complex number e
2πi
n is an algebraic integer because it is a root of xn − 1.

•
√

2 +
√

3 is an algebraic integer because it is a root of x4 − 10x2 + 1.

Why is this the “correct” definition. There is no short answer to this question, but we begin with another
characterization of algebraic integers that provides the first argument for it being the right choice. Recall
that α ∈ C is algebraic over Q if and only if

Q[α] = {p(α) : p(x) ∈ Q}

is finitely generated over Q (i.e. there is a finite set that spans Q[α] over Q).

Theorem 4.5.6. Let α ∈ C. The following are equivalent.

• α is an algebraic integer.

• Z[α] is a finitely generated additive subgroup of C (i.e. is finitely generated using only coefficients in
Z).

• There exists a subring R of C with α ∈ R such that R is a finitely generated additive group.
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Proof. 1 → 2: Suppose that α is an algebraic integer. Fix a monic polynomial h(x) ∈ Z[x] such that
h(α) = 0, say

h(x) = xn + cn−1x
n−1 + cn−2x

n−2 + · · ·+ c1x+ c0

One proof is that given any p(x) ∈ Z[x], there exists q(x), r(x) ∈ Z[x] with p(x) = q(x)h(x)+ r(x) and either
r(x) = 0 or deg(r(x)) < deg(h(x)) (although Z isn’t a field, the only thing you need in the proof for this to
work in F [x] is the fact that the leading coefficient is a unit in the ring). Thus, p(α) = r(α), and we are
done.

However, we now give a direct proof without using this fact. We show that αm ∈ 〈1, α, α2, . . . , αn−1〉
(viewed as the additive subgroup these generate) for all m ≥ n by induction. Since h(α) = 0, it follows that

αn = −(c0 · 1 + c1α+ · · ·+ cn−2α
n−2 + cn−1α

n−1)

Thus, αn ∈ 〈1, α, α2, . . . , αn−1〉, so the base case is true. Suppose that m ≥ n and we have shown that
αm ∈ 〈1, α, α2, . . . , αn−1〉. Fix k0, k1, . . . , kn−1 ∈ Z with

αm = k0 · 1 + k1α+ · · ·+ kn−2α
n−2 + kn−1α

n−1

We then have

αm+1 = αm · α
= (k0 · 1 + k1α+ · · ·+ kn−2α

n−2 + kn−1α
n−1) · α

= k0α+ k1α
2 + · · ·+ kn−2α

n−1 + kn−1α
n

= (k0α+ k1α
2 + · · ·+ kn−2α

n−1) + kn−1 · −(c0 · 1 + c1α+ · · ·+ cn−2α
n−2 + cn−1α

n−1)

= (−kn−1c0) · 1 + (k0 − kn−1c1) · α+ · · ·+ (kn−2 − kn−1cn−1) · αn−1

Thus, the result holds for αm+1. By induction, we see that αm is an element of the additive subgroup
generated by {1, α, α2, . . . , αn−1} for all m. From here, it follows that Z[α] is generated as an additive
abelian group by the set {1, α, α2, . . . , αn−1}.

2→ 3: Trivial.
3→ 2: Fix a subring R of C with α ∈ R such that R is a finitely generated additive group. Since R is a

subring of C, we have 1 ∈ R and hence Z ⊆ R. Fix β1, β2, . . . , βn which generate R as an additive abelian
group, i.e. such that

R = {k1β1 + k2β2 + · · ·+ knβn : ki ∈ Z}

Since R is a ring, we know that αβi ∈ R for each i, and hence there exists ki,j ∈ Z such that

αβi =
n∑
j=1

ki,jβj

If we let M be the n × n matrix M = [ki,j ] and let v be the n × 1 column vector v = [βi], then the above
equation simply says that αv = Mv. Now v 6= 0 because R 6= {0} (we certainly have 1 ∈ R), so α is an
eigenvalue of M . Let f(x) = det(xI−M) be the characteristic polynomial of M . Notice that f(x) is a monic
polynomial (of degree n) and that f(x) ∈ Z[x] because all entries in M are integers. Since α is an eigenvalue
of A, we know that α is a root of the characteristic polynomial f(x), so α is an algebraic integer.

Corollary 4.5.7. If α and β are algebraic integers, then α + β, α − β, and αβ are all algebraic integers.
Therefore, the set of all algebraic integers is a subring of C.
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Proof. Suppose that α, β ∈ C are both algebraic integers. We claim that the ring

Z[α, β] = {p(α, β) : p(x, y) ∈ Z[x, y]}

is a finitely generated additive group. Fix monic polynomials g(x), h(x) ∈ Z[x] such that g(α) = 0 and
h(α) = 0. Let m = deg(g(x)) and let n = deg(h(x)). As in the proof of the previous theorem, any αk is in
the additive subgroup generated by {1, α, α2, . . . , αm−1} and any β` is in the additive subgroup generated
by {1, β, β2, . . . , βn−1}. It follows that any αkβ` is an element of the additive subgroup generated by

{αiβj : 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1}

It follows that this set generated Z[α, β], so Z[α, β] is finitely generated as an additive group.
Now each of α+β, α−β, and αβ are elements of Z[α, β], so they are all algebraic integers by the previous

theorem.

Definition 4.5.8. Let K be a number field. We let OK be the ring of all algebraic integers in K (the set is
indeed a subring of K by the previous corollary).

Theorem 4.5.9 (Rational Root Theorem). Suppose that p(x) ∈ Z[x] is a nonzero polynomial and write

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where each ai ∈ Z and an 6= 0. Suppose that q ∈ Q is a root of p(x). If q = b
c where b, c ∈ Z are relatively

prime (so we write q in “lowest terms”), then b | a0 and c | an.

Proof. We have
an · (b/c)n + an−1 · (b/c)n−1 + · · ·+ a1 · (b/c) + a0 = 0

Multiplying through by cn we get

anb
n + an−1b

n−1c+ · · ·+ a1bc
n−1 + a0c

n = 0

From this, we see that
anb

n = c · [−(an−1b
n−1 + · · ·+ a1bc

n−2 + a0c
n−1)]

and hence c | anbn. Using the fact that gcd(b, c) = 1, it follows that c | an. On the other hand, we see that

a0c
n = b · [−(anbn−1 + an−1b

n−2c+ · · ·+ a1c
n−1)]

and hence b | a0c
n. Using the fact that gcd(b, c) = 1, it follows that b | a0.

Corollary 4.5.10. If q ∈ Q is an algebraic integer, then q ∈ Z.

Proof. Let q ∈ Q be an algebraic integer, and write q = b
c where b, c ∈ Z and gcd(b, c) = 1. Fix a nonzero

monic polynomial p(x) ∈ Z[x] such that p(q) = 0. Since p(x) ∈ Z[x] is monic, we may write

p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

Thus, by the previous Theorem, we have that c | 1 and b | a0. It follows that c ∈ {−1, 1}, and hence
q = b

c = ±b ∈ Z.

Theorem 4.5.11. Suppose that α ∈ C is algebraic (over Q). We then have that α is an algebraic integer if
and only if the minimal polynomial of α over Q has integer coefficients.
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Proof. Since the minimal polynomial of α over Q is monic by definition, every such α is indeed an algebraic
integer. Suppose conversely that α is an algebraic integer. Let m(x) be the minimal polynomial of α over Q.
Since α is an algebraic integer, we may fix a monic nonzero p(x) ∈ Z[x] such that α is a root of p(x). Since
m(x) is the minimal polynomial of α over Q, it follows that m(x) divides p(x) in Q[x]. Fix h(x) ∈ Q[x] with

p(x) = m(x) · h(x)

Notice that by looking at leading terms and using the fact that both p(x) and m(x) are monic, we can
conclude that h(x) is also monic. By Gauss’ Lemma, there exist s, t ∈ Q such that s · m(x) ∈ Z[x],
t · h(x) ∈ Z[x] and

p(x) = (s ·m(x)) · (t · h(x))

Since m(x) is monic and s · m(x) ∈ Z[x], we must have that s ∈ Z. Similarly, since h(x) is monic and
t · h(x) ∈ Z[x], we must have that t ∈ Z. Looking at leading terms, it follows that st = 1. Therefore, either
s = 1 = t or s = −1 = t. In either case, using the fact that s ·m(x) ∈ Z[x], we conclude that m(x) ∈ Z[x].
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Chapter 5

Quadratic Number Fields

5.1 Classifying Quadratic Number Fields

Definition 5.1.1. A quadratic number field is a number field K with [K : Q] = 2.

Definition 5.1.2. An integer d ∈ Z is square-free if ordp(d) ≤ 1 for all primes p.

The first few positive square-free numbers are 1, 2, 3, 5, 6, 7, 10, . . . and the first few negative square-free
numbers are −1,−2,−3,−5,−6,−7,−10, . . . . Notice that d is square-free if and only if −d is square-free.

Lemma 5.1.3. For all n ∈ Z\{0}, there exist unique m ∈ N+ and a square-free d ∈ Z such that n = m2d.

Proof. We first prove existence. If n = 1, we may take m = 1 and d = 1. If n = −1, we may take m = 1
and d = −1.

Let P = {p ∈ P : ordp(n) is even and nonzero} and let Q = {p ∈ P : ordp(n) is odd}. Let

d =
∏
p∈Q

p

and let

m =

∏
p∈P

pordp(n)/2

 ·
∏
p∈Q

p(ordp(n)−1)/2


A simple check shows that ordp(m2d) = ordp(n) for all primes p, so n and m2d are associates. If n = m2d,
we are done. If not, then n = m2(−d) and we are done since −d is also square-free.

We now prove uniqueness. Let n ∈ Z\{0}. Suppose that n = m2d and n = `2c where m, ` ∈ N+ and
c, d ∈ Z are square-free. We have `2c = m2d. Since both `2 > 0 and m2 > 0, it follows that c and d are
either both positive or both negative. Let p ∈ N+ be prime. Let p ∈ N+ be an arbitrary prime. We have

2 · ordp(`) + ordp(c) = 2 · ordp(m) + ordp(d)

so ordp(c)− ordp(d) is even. Since c and d are both square-free, we know that ordp(c) and ordp(d) are both
elements of {0, 1}. Thus, we must have ordp(c) = ordp(d) and hence ordp(c) = ordp(d). Since this is true
for all primes p ∈ N+, it follows that c and d are associates in Z. Combining this with the fact that c and d
have the same sign, we conclude that c = d. Canceling this nonzero number from both sides of `2c = m2d,
we deduce that `2 = m2. Since `,m ∈ N+, it follows that ` = m.

Theorem 5.1.4. A number field K is a quadratic number field if and only if there exists a square-free
d ∈ Z\{1} with K = Q(

√
d).

77
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Proof. Suppose first that d ∈ Z is square-free with d 6= 1. If d = −1, then
√
d = i is a root of the irreducible

x2 + 1 ∈ Q[x], so Q(i) is a quadratic number field. Suppose then that |d| > 2. We have that x2− d ∈ Q[x] is
irreducible in Q[x] by Eisenstein’s Criterion applied to any prime divisor of d (or by directly checking that
the roots are not rational), so Q(

√
d) is a quadratic number field.

We prove the converse through a sequence of steps.

• We first show that there exists r ∈ Q with K = Q(
√
r). Since [K : Q] > 1, we know that K 6= Q.

Thus, we may fix u ∈ K\Q. Notice that Q ( Q(u) because {1, u} is linearly independent over Q. Since
[K : Q] = 2 and Q(u) is a 2-dimensional subspace, we must have K = Q(u). Let m(x) ∈ Q[x] be the
minimal polynomial of u over Q and write m(x) = x2 + bx + c where b, c ∈ Q. Using the quadratic
formula, we then have that either

u =
−b+

√
b2 − 4c

2
or u =

−b−
√
b2 − 4c

2

In either case, we have u ∈ Q(
√
b2 − 4c) because b ∈ Q. In the former case we have

√
b2 − 4c = 2u+b ∈

Q(u), while in the latter we have
√
b2 − 4c = −2u− b ∈ Q(u) (again because b ∈ Q), so in either case

we have
√
b2 − 4c ∈ Q(u). It follows that Q(u) = Q(

√
b2 − 4c). Letting r = b2 − 4c ∈ Q, we are done.

• We now claim that there exists n ∈ Z with K = Q(
√
n). Fix r ∈ Q with K = Q(

√
r). Fix a ∈ Z

and b ∈ N+ with r = a
b . We claim that K = Q(

√
ab). Since

√
ab = b ·

√
a
b = b

√
r, we know that√

ab ∈ Q(
√
r). Since

√
r =

√
a
b = 1

b ·
√
ab, we know that

√
r ∈ Q(

√
ab). Therefore, letting n = ab ∈ Z,

we have K = Q(
√
r) = Q(

√
n).

• We now finish by proving that there exists a square-free d ∈ Z with K = Q(
√
d). Fix n ∈ Z with

K = Q(
√
n). Notice that n 6= 0 because K 6= Q. By the above lemma, we can write n = m2d where

m ∈ N+ and d ∈ Z is square-free. We then have
√
n = m ·

√
d because m > 0. Thus,

√
n ∈ Q(

√
d) and√

d = 1
m

√
n ∈ Q(

√
n). It follows that K = Q(

√
n) = Q(

√
d).

This completes the proof.

Theorem 5.1.5. If c, d ∈ Z are both square-free and Q(
√
c) = Q(

√
d), then c = d.

Proof. Suppose that c, d ∈ Z are both square-free and that Q(
√
c) = Q(

√
d). We then have

√
c ∈ Q(

√
d).

We know that [Q(
√
d) : Q] = 2, so

Q(
√
d) = {s+ t

√
d : a, b ∈ Q}

Fix s, t ∈ Q with
√
c = s+ t

√
d. Notice first that t 6= 0 because

√
c /∈ Q as c is square-free (see the proof of

the previous theorem).
Suppose that s 6= 0. Squaring both sides we see that

c = s2 + 2st
√
d+ dt2

hence
√
d =

c− s2 − dt2

2st
∈ Q

which is a contradiction.
Therefore, we must have s = 0 and t 6= 0. Let t = a

b where a, b ∈ Z are relatively prime and b > 0. We
have that

√
c = t

√
d. Squaring both sides gives c = dt2 and multiplying both sides by b2 we conclude that

b2c = a2d. By the uniqueness part of Lemma 5.1.3 (applied to −a and b if a < 0), we must have c = d.
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5.2 Integers in Quadratic Number Fields

Recall that given a number field K, we defined OK to be the ring of algebraic integers in K. Now that we
classified all quadratic number fields as K = Q(

√
d) where d ∈ Z is square-free and d 6= 1, we set about the

task of finding the ring of algebraic integers OK in each of these number fields. As alluded to above, it is
natural to believe that when OQ(

√
d) might be Z[

√
d] = {a + b

√
−d : a, b ∈ Z. However, consider the case

where d = −3. Letting ζ3 = e2πi/3, we showed above that Q(
√
−3) = Q(ζ3). Now

ζ3 = −1
2

+
1
2
·
√
−3

and ζ3 is a root of x3 − 1 = (x − 1)(x2 + x + 1). Thus, ζ is a root of x2 + x + 1 ∈ Z[x], and hence ζ is
an algebraic integer in Q(

√
−3) that is not an element of Z[

√
−3]. Before precisely determining OK for the

quadratic number fields K, we first prove a very useful lemma.

Lemma 5.2.1. Let d ∈ Z be square-free. Suppose that q ∈ Q and q2d ∈ Z. We then have that q ∈ Z.

Proof. Write q = a
b where a, b ∈ Z and b 6= 0. Notice that

a2d = b2 ·
(a
b

)2

· d = b2 · (q2d)

Since q2d ∈ Z, we see that b2 | a2d in Z. Let p ∈ N+ be an arbitrary prime. Since b2 | a2d, we know that

ordp(b2) ≤ ordp(a2d)

and hence
2 · ordp(b) ≤ 2 · ordp(a) + ordp(d)

Now d is square-free, so we know that ordp(d) ≤ 1. Since 2 · ordp(b) and 2 · ordp(a) are both even and
ordp(d) ∈ {0, 1}, we can conclude that 2 · ordp(b) ≤ 2 · ordp(a) and hence ordp(b) ≤ ordp(a). Since p was an
arbitrary prime, it follows that b | a in Z. Therefore, q = a

b ∈ Z.

Theorem 5.2.2. Suppose that d ∈ Z is square-free with d 6= 1.

• If d 6≡ 1 (mod 4), then the set of algebraic integers in the number field Q(
√
d) is the set

Z[
√
d] = {a+ b

√
d : a, b ∈ Z}

• If d ≡ 1 (mod 4), then the set of algebraic integers in the number field Q(
√
d) is the set

Z

[
1 +
√
d

2

]
=

{
a+ b

(
1 +
√
d

2

)
: a, b ∈ Z

}

= {a+ b
√
d : a, b ∈ Z} ∪

{
a

2
+
b

2

√
d : a, b ∈ Z are both odd

}
Proof. We first show that{

a+ b

(
1 +
√
d

2

)
: a, b ∈ Z

}
= {a+ b

√
d : a, b ∈ Z} ∪

{
a

2
+
b

2

√
d : a, b ∈ Z are both odd

}
Let a, b ∈ Z. We have

a+ b

(
1 +
√
d

2

)
=
(
a+

b

2

)
+
b

2
·
√
d =

(
2a+ b

2

)
+
b

2
·
√
d
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If b is even, then a+ b
2 and b

2 are integers, so this element is in the set on the right. If b is odd, then 2a+ b
is also odd, so again this element is in the set on the right. It follows that the set on the left is a subset of
the one on the right. We now show the reverse containment. If a, b ∈ Z, then

a+ b
√
d = (a− b) + 2b ·

(
1 +
√
d

2

)

Furthermore, if a, b ∈ Z are both odd, then a− b is even and we have

a

2
+
b

2

√
d =

a− b
2

+ b ·

(
1 +
√
d

2

)

Therefore, the set on the right is a subset of the one on the left, and combining this with the above we
conclude that the two sets are equal.

We now prove the result. Let s, t ∈ Q so s+ t
√
d ∈ Q(

√
d). Notice that

(s+ t
√
d)2 = s2 + 2st

√
d+ dt2 = (s2 + dt2) + (2st)

√
d

Therefore, we have

(s+ t
√
d)2 − 2s · (s+ t

√
d) = s2 + 2st

√
d+ dt2 − 2s2 − 2st

√
d

= −s2 + dt2

It follows that s+ t
√
d is root of the monic polynomial

x2 + (−2s)x+ (s2 − dt2)

Now if s, t ∈ Z, then this polynomial is a monic polynomial with integer coefficients having s+ t
√
d as a root,

so s + t
√
d is an algebraic integer. In other words, every element in Z[

√
d] is an algebraic integer. Suppose

that d ≡ 1 (mod 4) and s = a
2 and t = b

2 where a, b ∈ Z are odd. Notice that −2s = −a ∈ Z. We have

s2 − dt2 =
a2

4
− d · b

2

4
=
a2 − db2

4

Now since both a and b are odd, it follows that a2 ≡ 1 (mod 4) and b2 ≡ 1 (mod 4). Thus, a2 − db2 ≡
(1 − 1 · 1) ≡ 0 (mod 4), hence 4 | (a2 − db2). It follows that s2 − dt2 ∈ Z also, so s + t

√
d is an algebraic

integer. Therefore, if d ≡ 1 (mod 4), then every element in Z[ 1+
√
d

2 ] is an algebraic integer. We have shown
that if d 6≡ 1 (mod 4), then every element of Z[

√
d] is an algebraic integer, and if d ≡ 1 (mod 4), then every

element of Z[ 1+
√
d

2 ] is an algebraic integer.
We now show the converse. Suppose that s, t ∈ Q and s+ t

√
d ∈ Q(

√
d) is an algebraic integer. If t = 0,

then s+ t
√
d = s ∈ Q, so s ∈ Z (because Z is the set of algebraic integers in Q) and hence s+ t

√
d ∈ Z[

√
d]

(and so s+ t
√
d ∈ Z[ 1+

√
d

2 ] if d ≡ 1 (mod 4)). Suppose then that t 6= 0. We know that s+ t
√
d is a root of

polynomial
x2 + (−2s)x+ (s2 − dt2)

and since this degree two polynomial has no rational roots (the roots are s+ t
√
d and s− t

√
d and neither is

rational because t 6= 0 and d is squarefree), it follows that it is irreducible and hence the minimal polynomial
of s+ t

√
d over Q. Since we are assuming that s+ t

√
d is an algebraic integer, we conclude from above that

both −2s ∈ Z and s2 − dt2 ∈ Z. We now have two cases.
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• Suppose that s ∈ Z. We then have that s2 ∈ Z, so since s2 − dt2 ∈ Z, it follows that dt2 = s2 −
(s2 − dt2) ∈ Z. Since d is square-free, we may use the above lemma to conclude that t ∈ Z. Therefore,
s+ t

√
d ∈ Z[

√
d].

• Suppose that s /∈ Z. We have −2s ∈ Z, so 2s ∈ Z, and hence we may write s = a
2 for some odd a ∈ Z.

Now

s2 − td2 =
a2

4
− td2 ∈ Z

so a2 − 4td2 ∈ Z, and hence d(2t)2 = 4dt2 ∈ Z. Since d is square-free, the lemma implies that 2t ∈ Z.
Fix b ∈ Z with t = b

2 . We now have

s+ t
√
d =

a

2
+
b

2

√
d

with a odd. We know that
a2 − b2d

4
= s2 − dt2 ∈ Z

and hence 4 | (a2 − db2). Now if b is even, then 2 | db2, so 2 | a2, a contradiction. Therefore, b is odd.
The only thing left to do is to show that in this case we must have d ≡ 1 (mod 4). Since a and b are
both odd, we know that a2 ≡ 1 ≡ b2 (mod 4). As noted above, we have 4 | (a2 − b2d), so a2 ≡ b2d
(mod 4). Therefore, 1 ≡ d (mod 4).

Notice in the special case where d = −1, we have −1 6≡ 1 (mod 4), so

OQ(i) = {a+ bi : a, b ∈ Z} = Z[i]

as we probably expected.
Consider the case where d = −3. Recall that if we let

ζ3 = e2πi/3 = −1
2

+
√

3
2
i

then the minimal polynomial of ζ3 over Q is x2 +x+1 and we have Q(
√
−3) = Q(ζ3). Consider ζ6 = e2πi/6 =

eπi/6. Now ζ6 is a root of the polynomial x6 − 1 and

x6 − 1 = (x3 − 1)(x3 + 1) = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1)

Thus, ζ6 is a root of one of the four factors on the right, and a simple check shows that it is a root of
x2 − x + 1. This polynomial is irreducible over Q (because it has no rational roots), so it is the minimal
polynomial of ζ6 over Q. Now

ζ6 = cos(π/6) + i sin(π/6) =
1
2

+
√

3
2
i

It follows that ζ6 = ζ3 + 1, hence ζ6 ∈ Q(ζ3) and ζ3 = ζ6 − 1 ∈ Q(ζ6). We conclue that

Q(ζ6) = Q(ζ3) = Q(
√
−3)

Now −3 ≡ 1 (mod 4), so we know that

OQ(
√
−3) = Z

[
1 +
√
−3

2

]
= Z[ζ6]

Since ζ6 = ζ3 + 1, we have ζ6 ∈ Z[ζ3] and ζ3 ∈ Z[ζ6], so we also have

OQ(
√
−3) = Z[ζ3]

Thus, the ring of integers in the number field Q(
√
−3) can be written in either of the following ways:

OQ(
√
−3) = Z[ζ3] = {a+ bζ3 : a, b ∈ Z} OQ(

√
−3) = Z[ζ6] = {a+ bζ6 : a, b ∈ Z}
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5.3 Norms and Units

5.3.1 The Norm on a Quadratic Number Field

Definition 5.3.1. Let d ∈ Z be square-free with d 6= 1. We define a function N : Q(
√
d) → Q by letting

N(s+ t
√
d) = s2 − dt2. The function N is called the norm on the field Q(

√
d).

Notice that if d = −1 and we are working in Q(
√
−1) = Q(i), then

N(s+ ti) = s2 − (−1)t2 = s2 + t2

is our old norm function.
Suppose that d ∈ Z\{1} is square-free and s, t ∈ Q. We showed in the above proof that s+ t

√
d is a root

of the polynomial
x2 + (−2s)x+ (s2 − dt2)

As described in the above proof, this polynomial is irreducible in Q[x] when t 6= 0, and hence is the minimal
polynomial of s+ t

√
d over Q when t 6= 0. Using the quadratic formula, the roots of x2 + (−2s)x+ (s2−dt2)

are

−(−2s)±
√

(−2s)2 − 4(s2 − dt2)
2

=
2s±

√
4dt2

2

=
2s± 2t

√
d

2
= s± t

√
d

With this in mind, we can interpret N(s+ t
√
d) in a few ways when t 6= 0. One way is that N(s+ t

√
d) is

the constant term of the minimal polynomial of s + t
√
d over Q. Alternatively, N(s + t

√
d) is the product

of the two roots of the minimal polynomial of s+ t
√
d over Q. This is true because

N(s+ t
√
d) = s2 − dt2 = (s+ t

√
d)(s− t

√
d)

even in the case when t = 0. In the case where d < 0, notice that N(s+ t
√
d) = s2 − dt2 is just the square

of the distance between the complex point s+ t
√
d = s+ (−t

√
−d)i and the origin in the complex plane.

If you know some Galois theory, then N(s + t
√
d) is just the product of the two Galois conjugates of

s+ t
√
d over Q. If you don’t know some Galois theory, then we elaborate on this idea now.

Definition 5.3.2. Let d ∈ Z\{1} be square-free. Define a function φ : Q(
√
d)→ Q(

√
d) by letting

φ(s+ t
√
d) = s− t

√
d

Given α ∈ Q(
√
d), we call φ(α) the conjugate of α, and denote it by α.

Notice that if d < 0, then α is indeed the normal complex conjugate of α. However, if d > 0, then
Q(
√
d) ⊆ R and hence α is not the complex conjugate of α. For example, if d = 2 and we are working in

Q(
√

2), then 5 +
√

2 = 5−
√

2 which are distinct positive real numbers.

Theorem 5.3.3. Let d ∈ Z\{1} be square-free and let K = Q(
√
d). The conjugation map φ : K → K defined

above by φ(s + t
√
d) = s − t

√
d is a automorphism of the field K. Furthermore, φ maps OK onto OK , so

upon restriction to this subring we can view φ as automorphism of the ring of integers of K.
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Proof. Given q, r, s, t ∈ Q, we have

φ((q + r
√
d) + (s+ t

√
d)) = φ((q + s) + (r + t)

√
d)

= (q + s)− (r + t)
√
d

= (q − r
√
d) + (s− t

√
d)

= φ(q + r
√
d) + φ(s+ t

√
d)

and also

φ((q + r
√
d) · (s+ t

√
d)) = φ(qs+ rs

√
d+ qt

√
d+ rtd)

= φ((qs+ rtd) + (rs+ qt)
√
d)

= (qs+ rtd)− (rs+ qt)
√
d

= qs− rs
√
d− qt

√
d+ rtd

= (q − r
√
d) · (s− t

√
d)

= φ(q + r
√
d) · φ(s+ t

√
d)

We also have φ(1) = φ(1 + 0
√
d) = 1− 0

√
d = 1, so φ is an ring homomorphism. Now for any q, r ∈ Q, we

have

φ(φ(q + r
√
d)) = φ(q − r

√
d)

= φ(q + (−r)
√
d)

= q − (−r)
√
d

= q + r
√
d

Thus, φ2 = idK , so φ is its own inverse and hence φ is a bijection. Therefore, φ is an automorphism of K.
We now prove that φ maps OK into OK . One approach is simply to use our characterization of OQ(

√
d)

to check it but we give another much more general argument. Suppose that α ∈ OK . We then have that α
is an algebraic integer, so we may fix a monic h(x) ∈ Z[x] with h(α) = 0. Write

h(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

where each ai ∈ Z. Since h(α) = 0, we have

αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0

Applying φ to both sides and using the fact that it preserves addition/multiplication, we conclude that

(φ(α))n + an−1(φ(α))n−1 + · · ·+ a1φ(α) + a0 = 0

so φ(α) is also a root of h(x). Since h(x) is a monic polynomial in Z[x], we conclude that φ(α) is also an
algebraic integer. Since φ(α) ∈ K, we conclude that φ(α) ∈ OK . Therefore, φ maps OK into OK . To finish
the proof, we need to argue that every element of OK is in the range of φ|OK . Let α ∈ OK . We then have
that φ(α) ∈ OK by what we just proved and φ(φ(α)) = α. It follows that range(φ|OK ) = OK .

Using the above notation, notice that given α ∈ Q(
√
d), we have N(α) = αα. In particular, if α 6= 0,

then
α−1 =

α

N(α)
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Proposition 5.3.4. Let d ∈ Z be squarefree and let K = Q(
√
d). For the function N(s + t

√
d) = s2 − dt2

defined on Q(
√
d), we have

1. If d < 0, then N(α) ≥ 0 for all α ∈ K.

2. N(α) = 0 if and only if α = 0.

3. N(q) = q2 for all q ∈ Q.

4. N(α) ∈ Z for all α ∈ OK .

5. N(αβ) = N(α) ·N(β) for all α, β ∈ K.

Proof. Statements 1 and 3 are immediate from the definition. Statement 4 follows from the fact that
N(s + t

√
d) is the constant term of the minimal polynomial of s + t

√
d when t 6= 0, which is an integer

because we are assuming s + t
√
d ∈ OK . For statement 2, we clearly have that N(0) = 0. Suppose that

N(α) = 0. Writing α = s+ t
√
d where s, t ∈ Q, we see that

(s+ t
√
d)(s− t

√
d) = N(

√
d) = 0

so either s+ t
√
d = 0 or s− t

√
d = 0. Since {1,

√
d} is a basis of Q(

√
d) over Q, it follows that s = t = 0, so

α = 0.
For statement 5, suppose that α, β ∈ Q(

√
d) and write α = q + r

√
d and β = s+ t

√
d. We have

N(αβ) = (αβ) · (αβ)

= αβαβ

= ααββ

= N(α) ·N(β)

Proposition 5.3.5. Let d ∈ Z\{1} be square-free, let K = Q(
√
d), and let α ∈ OK . We have that

α ∈ U(OK) if and only if N(α) = ±1.

Proof. Suppose first that α ∈ U(OK). Fix β ∈ OK with αβ = 1. We then have

N(α)N(β) = N(αβ) = N(1) = 12 = 1

Since N(α), N(β) ∈ Z, it follows that N(α) | 1 in Z, so N(α) = ±1.
Suppose conversely that α ∈ OK with N(α) = ±1. If N(α) = 1, then

1 = N(α) = αα

Since α = φ(α) ∈ OK , it follows that α has an inverse in OK , so is unit. Similarly, if N(α) = −1, then

−1 = N(α) = αα

so 1 = α(̇− α). Since −α = −φ(α) ∈ OK (recall that OK is a subring of K), it follows that α ∈ U(OK)

Proposition 5.3.6. Suppose that d ∈ Z is squarefree and that d < 0. Let K = Q(
√
d).

• If d = −1, then U(OK) = {1,−1, i,−i}.



5.3. NORMS AND UNITS 85

• If d = −3, then

U(OK) =
{

1,−1,
1
2

+
√
−3
2

,−1
2

+
√
−3
2

,−1
2
−
√
−3
2

,
1
2
−
√
−3
2

}
= {1,−1, ζ6, ζ2

6 , ζ
4
6 , ζ

5
6}

= {1,−1, ζ6, ζ3, ζ−1
3 , ζ−1

6 }

• If d /∈ {−1,−3}, then U(OK) = {1,−1}.

Proof. If d = −1, then OK = Z[i], and we’ve already seen that U(Z[i]) = {1,−1, i,−i}. Suppose that
d ≤ −2. Let m = −d, so m ∈ Z and m ≥ 2. Recall that N(α) ≥ 0 for all α ∈ OK because d < 0, and so
α ∈ OK is a unit if and only if N(α) = 1.

Suppose that a, b ∈ Z. We have

N(a+ b
√
d) = a2 − db2 = a2 +mb2

Thus, if b 6= 0, then |b| ≥ 1, and hence N(a + b
√
d) ≥ mb2 ≥ m > 1. Also, if |a| ≥ 2, then N(a + b

√
d) ≥

a2 ≥ 4 > 1. It follows that N(a+ b
√
d) = 1 if and only if either (a, b) = (1, 0) or (a, b) = (−1, 0), so the only

units of this form are 1 and −1.
Suppose now that d ≡ 1 (mod 4). Let a, b ∈ Z with both a and b odd so that a

2 + b
2

√
d ∈ OK . We have

N

(
a

2
+
b

2

√
d

)
=
(a

2

)2

− d ·
(
b

2

)2

=
a2 − db2

4
=
a2 +mb2

4

We therefore have that N(a2 + b
2

√
d) = 1 if and only if a2 + mb2 = 4. If d 6= −3, then d ≤ −7, so m ≥ 7

and hence when b 6= 0 we have a2 + mb2 ≥ m > 4. Thus, if d 6= −3, then we are looking for solutions to
a2 = 4 in the odd integers, which do not exist. Suppose then that d = −3 so m = 3. We are now looking for
solutions to a2 + 3b2 = 4 where a, b ∈ Z are odd. If b = 0, then a2 = 4 which as above has no solutions in
odd integers. If |b| ≥ 2, then a2 + 3b2 ≥ 12 > 4. If b = ±1, then we are looking for solutions to a2 + 3 = 4
where a ∈ Z are odd, which clearly has solutions a = ±1. This gives the above units.

5.3.2 Units in Real Quadratic Number Fields and Pell’s Equation

When we examine d > 0, the situation is much more interesting. Consider the case where d = 2. We have
K = Q(

√
2) and OK = {a+ b

√
2 : a, b ∈ Z}. We know that

U(OK) = {α ∈ OK : N(α) = ±1}

and that
N(a+ b

√
2) = a2 − 2b2

Thus, given a, b ∈ Z, we have a+ b
√

2 ∈ U(OK) if and only if a2 − 2b2 = ±1. One such example is 1 +
√

2.
Notice that

N(1 +
√

2) = 12 − 2 · 12 = −1

so 1 +
√

2 ∈ U(OK). We have

(1 +
√

2)−1 =
1−
√

2
−1

= −1 +
√

2

Now we know that U(OK) is a multiplication subgroup of OK , so the product of two units is a unit. Thus,
we can obtain more elements of U(OK) by taking powers of 1 +

√
2. Now since 1 +

√
2 ∈ R with 1 +

√
2 > 1,
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these powers will increase in size in Q, and hence will never repeat. Thus, U(OK) will be infinite. For
example, another element of U(OK) is

(1 +
√

2)2 = 1 + 2
√

2 + 2 = 3 + 2
√

2

We have
N(3 + 2

√
2) = N((1 +

√
2)2) = N(1 +

√
2)2 = (−1)2 = 1

and
(3 + 2

√
2)−1 = 3−

√
2

Multiplying by 1 +
√

2 again we obtain

(3 + 2
√

2)(1 +
√

2) = 3 + 3
√

2 + 2
√

2 + 4 = 7 + 5
√

2

which is another unit with norm −1. If we keep taking powers we obtain units whose norm alternates
between 1 and −1. We have the following list:

(1 +
√

2)1 = 1 +
√

2

(1 +
√

2)2 = 3 + 2
√

2

(1 +
√

2)3 = 7 + 5
√

2

(1 +
√

2)4 = 17 + 12
√

2

(1 +
√

2)5 = 41 + 29
√

2

(1 +
√

2)6 = 99 + 70
√

2

One can obtain a recurrence to help calculate these. If n ∈ N+ is such that

(1 +
√

2)n = a+ b
√

2

Then

(1 +
√

2)n+1 = (1 +
√

2)n · (1 +
√

2)

= (a+ b
√

2)(1 +
√

2)

= (a+ 2b) + (a+ b)
√

2

Notice that if you take one of the above units a + b
√

2, then a
b is a pretty good approximation to

√
2. We

have
√

2 = 1.414213 . . . while

1
1

= 1.000000 . . .

3
2

= 1.500000 . . .

7
5

= 1.400000 . . .

17
12

= 1.416666 . . .

41
29

= 1.413793 . . .

99
70

= 1.414285 . . .
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The study of units in OK where K = Q(
√
d) and d ∈ Z is square-free and at least 2 is closely related to

another problem in the history of number theory.

Definition 5.3.7. Let n ∈ N+. Pell’s Equation (relative to n) is the equation x2 − ny2 = 1, where we look
for solutions x, y ∈ Z.

Given n ∈ N+, two solutions to the Pell Equation are trivial: namely (1, 0) and (−1, 0). Notice that
if (x, y) is a solution to the Pell Equation, then so are (±x,±y), so we may focus attention on x, y ∈ N.
Furthermore, there are clearly no such solutions with x = 0, and the trivial solutions are the only ones with
y = 0. Thus, we may assume that x, y ∈ N+ when examining nontrivial solutions.

We restrict to the case where n ≥ 1 because if n ∈ Z with n ≤ n, then the trivial solutions are clearly the
only solutions. Suppose that n is a perfect square, say n = m2. In this case, Pell’s Equation can be easily
solved by factoring. We have

x2 − ny2 = x2 −m2y2 = (x−my)(x+my)

Thus, if (x, y) is a solution to Pell’s Equation, then

(x−my)(x+my) = 1

Since x−my, x+my ∈ Z, it follows that x−my = ±1 and x+my = ±1. In the case where x−my = 1 and
x+my = 1, we see that 2x = 2, so x = 1 and hence y = 0. In the case where x−my = −1 and x+my = −1,
we see that 2x = −2, so x = −1 and y = 0. Therefore, if n is a perfect square, then the trivial solutions are
the only solutions.

We will focus attention on the case of Pell’s Equation x2 − dy2 = 1 where d is square-free and at least 2.
Given a general n ∈ N+ that is not a perfect square, we can write n = dm2 where d ≥ 2 is square-free and
m ∈ N+. The equation

x2 − ny2 = 1

is then the same thing as the equation
x2 − d(my)2 = 1

Thus, if we understand solutions to x2 − dy2 = 1, we could in theory translate those solutions where m | y
into solutions of the equation with n.

Suppose then that d ∈ Z is square-free with d ≥ 2. Let K = Q(
√
d). Notice that (x, y) is a solution to

Pell’s Equation, then x2 − dy2 = 1, so

N(x+ y
√
d) = x2 − dy2 = 1

and hence x + y
√
d ∈ U(OK). Thus, solutions to Pell’s Equation give units in OK . The converse is not

quite true for two reasons. First, an α ∈ U(OK) could be such that N(α) = −1 rather than N(α) = 1.
However, notice that in this case we have α2 ∈ U(OK) and N(α2) = 1, so we can build a unit in OK from
such an element. The other possibility is that we could have d ≡ 1 (mod 4) and our unit could be of the
form a

2 + b
2

√
d where a, b ∈ Z are odd, which does not give rise to a solution to Pell’s Equation.

Regardless, if we can show that Pell’s Equation always has a nontrivial solution for d ≥ 2 square-free, then
we will have shown that there is always a nontrivial unit in OK . We now go about proving this important
theorem.

Theorem 5.3.8. Suppose that d ∈ Z is square-free and d ≥ 2. There exist x, y ∈ Z with x 6= ±1 such that
x2 − dy2 = 1. In other words, there exists a nontrivial solution to Pell’s Equation.

Before jumping into the proof of the theorem, we develop some more refined intuition about what a
nontrivial solution provides in terms of rational approximations to

√
d. Suppose then that (x, y) ∈ N+ is a

nontrivial solution to the Pell Equation. Notice that

(x− y
√
d)(x+ y

√
d) = x2 − dy2 = 1
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and hence
x− y

√
d =

1
x+ y

√
d

It follows that
x

y
−
√
d =

1
y · (x+ y

√
d)

Since x+ y
√
d > y (as x > 0), it follows that

0 <
x

y
−
√
d <

1
y2

so in particular ∣∣∣∣xy −√d
∣∣∣∣ < 1

y2

Intuitively, this is saying that x
y is a good approximation to the irrational number

√
d because its distance

from
√
d is 1

y2 , which is much less than 1
y (Notice that it is simple to argue that given y ∈ N+, there

exists x ∈ N+ with |xy −
√
d| < 1

y ). As we will see, solutions to the Pell’s Equation and “good” rational
approximations to

√
d go hand-in-hand. In fact, we will prove the above theorem by proving a sequence of

lemmas which slowly reverse the above implications. In particular, our first goal is to show that
√
d has

infinitely many “good” rational approximations.

Lemma 5.3.9. Let α ∈ R with α > 0 and let M ∈ N+. There exists x, y ∈ N such that 0 < y ≤ M and
|x− yα| < 1

M .

Proof. Divide the interval [0, 1) into M subintervals

[0, 1
M ) [ 1

M , 2
M ) [ 2

M , 3
M ) · · · [M−1

M , 1)

Consider the following M + 1 many elements of [0, 1):

0α− b0αc 1α− b1αc 2α− b2αc · · · Mα− bMαc

By the Pigeonhole Principle, two of these numbers lie in the same interval. Thus, there exists k, ` with
0 ≤ k < ` ≤M such that

|(kα− bkαc)− (`α− b`αc)| < 1
M

We then have
|(b`αc − bkαc)− (`− k)α| < 1

M

Thus, we may let
x = b`αc − bkαc

and
y = `− k

Notice that x ≥ 0 because `α > kα (as k < ` and α > 0) and also 0 < y ≤M because 1 ≤ k < ` ≤M+1.

Lemma 5.3.10. Let α ∈ R be irrational with α > 0. There exist infinitely many pairs (x, y) ∈ N2 with
y 6= 0 such that ∣∣∣∣xy − α

∣∣∣∣ < 1
y2
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Proof. Notice that at least one such pair exists, namely (bαc, 1). Suppose that there exist n such pairs

(x1, y1) (x2, y2) (x3, y3) · · · (xn, yn)

We show how to find another such pair. Let

δ = min{|xi − αyi| : 1 ≤ i ≤ n}

and notice that δ > 0 because α is irrational. Let M ∈ N+ be chosen such that M > 1
δ . By the previous

lemma, there exist x, y ∈ N with 0 < y ≤M and |x− yα| < 1
M . Notice that 1

M < δ, so (x, y) is distinct from
each of the pairs (xi, yi). Now 0 < y ≤M , so∣∣∣∣xy − α

∣∣∣∣ < 1
yM

≤ 1
y2

With the previous lemma in hand, we are now ready to prove that the Pell Equation has a nontrivial
solution whenever d ∈ N+ is squarefree.

Proof of Theorem 5.3.8. Since d ∈ Z is square-free with d ≥ 2, we know that
√
d is irrational. For any

(x, y) ∈ N2 with y 6= 0 and ∣∣∣∣xy − α
∣∣∣∣ < 1

y2

we can view x+ y
√
d ∈ Z[

√
d] ⊆ OK , where we have

|N(x+ y
√
d)| = |x2 − dy2|

= |x− y
√
d| · |x+ y

√
d|

= y2 ·
∣∣∣∣xy −√d

∣∣∣∣ · ∣∣∣∣xy +
√
d

∣∣∣∣
< y2 · 1

y2
·
∣∣∣∣xy +

√
d

∣∣∣∣
=
∣∣∣∣xy +

√
d

∣∣∣∣
=
∣∣∣∣xy −√d+ 2

√
d

∣∣∣∣
≤
∣∣∣∣xy −√d

∣∣∣∣+ 2
√
d

<
1
y2

+ 2
√
d

≤ 2
√
d+ 1

Our goal now is to find a nontrivial element of Z[
√
d] of norm 1 (it’s possible that Z[

√
d] ( OK , but we just

work in this smaller subring in that case). Using the previous lemma combined with the above calculations,
it follows that there are infinitely many elements α ∈ Z[

√
d] with

−(1 + 2
√
d) < N(α) < 1 + 2

√
d

In particular, there exists a k ∈ Z such that there are infinitely many α ∈ Z[
√
d] with N(α) = k. Notice

that k 6= 0 because we know that N(α) = 0 implies α = 0. Looking at the coefficients a, b ∈ Z of these
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α = a + b
√
d, we see that modulo |k| there are at most |k| possible values of each, and hence there are at

most k2 possible pairs modulo |k|, Thus, since there are infinitely many α ∈ Z[
√
d] with N(α) = k, we may

fix α, β ∈ Z[
√
d] such that

• N(α) = k = N(β)

• k | (α− β) in Z[
√
d] (i.e. the corresponding coefficients of α and β are pairwise congruent modulo k).

• α 6= ±β.

Now β ∈ Z[
√
d] ⊆ Q(

√
d) and β 6= 0, so β−1 ∈ Q(

√
d). Notice that since

N(β)N(β−1) = N(ββ−1) = N(1) = 1

it follows that
N(β−1) =

1
N(β)

=
1
k

and thus
N(αβ−1) = N(α)N(β−1) = k · 1

k
= 1

We have now found a nontrivial element αβ−1 ∈ Q(
√
d) of norm 1 (notice that it does not equal ±1 because

α 6= ±β), and our goal now is to show that our element is in Z[
√
d]. We have

αβ−1 = α · β

N(β)
=
αβ

k

To finish, we need only show that k | αβ in Z[
√
d]. Notice that ββ = N(β) = k so

αβ = αβ − k + k

= αβ − ββ + k

= (α− β)β − k

Since we chose α and β so that k | (α − β), it follows that k | αβ in Z[
√
d]. Therefore, αβ−1 ∈ Z[

√
d] is a

nontrivial element of norm 1, so gives a nontrivial solution to Pell’s Equation.

Lemma 5.3.11. Let d ∈ Z be square-free with d ≥ 2, and let µ ∈ OQ(
√
d) be a unit with µ 6= ±1. The

elements ±µ and ±µ are four distinct units, and exactly one of them lies in each of the intervals (−∞,−1),
(−1, 0), (0, 1) and (1,∞).

Proof. We have

µ−1 =
µ

N(µ)
=

µ

±1
= ±µ

Since N(1) = 1 = N(−1) and N is multiplicative, it follows that each of the four elements ±µ and ±µ are
units, and they are equal to the four units ±µ and ±µ−1. Notice by assumption that none of them are ±1.
If µ > 1, then 0 < µ−1 < 1, so −1 < −µ−1 < 0 and −µ < −1. The other cases are similar.

Lemma 5.3.12. Let d ∈ Z be square-free with d ≥ 2, and let µ ∈ OQ(
√
d) be a unit with µ 6= ±1.

• If µ = a+ b
√
d where a, b ∈ Z, then µ > 1 if and only if both a > 0 and b > 0.

• If d ≡ 1 (mod 4) and µ = a
2 + b

2

√
d where a, b ∈ Z are both odd, then µ > 1 if and only if both a > 0

and b > 0.
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Proof. Suppose first that µ = a+ b
√
d where a, b ∈ Z. If both a, b > 0, then clearly a+ b

√
d ≥ 1 +

√
d > 1.

Suppose conversely that a+ b
√
d > 1. By the previous lemma, the four elements

a+ b
√
d, a+ (−b)

√
d, (−a) + b

√
d, (−a) + (−b)

√
d

are all units and exactly one of them is greater than 1. Now the choice with both coefficients positive is
clearly greater than the other three, so that must be the one which is greater than 1. Since we are assuming
that a+ b

√
d > 1, it follows that both a > 0 and b > 0.

Suppose now that d ≡ 1 (mod 4) and µ = a
2 + b

2

√
d where a, b ∈ Z are both odd. We then have d ≥ 5.

If both a, b > 0, then a+ b
√
d ≥ 1

2 + 1
2

√
5 > 1. The converse is the same argument as in the first part.

Corollary 5.3.13. Let d ∈ Z be square-free with d ≥ 2, and let M ∈ R with M > 1. There are only finitely
many units in OQ(

√
d) lying in the interval (1,M ].

Proof. Notice that there are only finitely many positive integers with a + b
√
d ≤ 2M and use the previous

Lemma.

Corollary 5.3.14. Let d ∈ Z be square-free with d ≥ 2. There exists µ0 ∈ U(OQ(
√
d)) with µ0 > 1 such that

µ0 ≤ µ whenever µ ∈ U(OQ(
√
d)) satisfies µ > 1.

Proof. We know that there exists a nontrivial solution (x, y) to Pell’s Equation, and we may assume that
x, y > 0. We then have that x + y

√
d > 1 is a nontrivial unit. By the previous Corollary, there are only

finitely many units in the interval (1, x+ y
√
d], and since there is at least one we may choose a smallest such

unit µ0.

Definition 5.3.15. Let d ∈ Z be square-free with d ≥ 2. The unique unit µ0 ∈ U(OQ(
√
d)) satisfying the

above corollary is called the fundamental unit of OQ(
√
d).

Theorem 5.3.16. Let d ∈ Z be square-free with d ≥ 2. Let µ0 be the fundamental unit of OQ(
√
d). We then

have
U(OQ(

√
d)) = {±µn0 : n ∈ Z}

In particular, U(OQ(
√
d)) ∼= Z× (Z/2Z) where the term on the right is though of as an additive abelian group.

Proof. Suppose first that ν ∈ U(OQ(
√
d)) is an arbitrary unit with ν > 1. Let n ∈ N+ be least such that

ν ≤ µn0 (notice that such an n exists because µ0, ν > 1). We then have

µn−1
0 < ν ≤ µn0

Multiplying through by µ−(n−1)
0 > 0, we conclude that

1 < νµ
−(n−1)
0 ≤ µ0

Since νµ−(n−1) is a unit, we must have νµ−(n−1)
0 = µ0 by choice of µ0. It follows that ν = µn0 . Thus we have

shown that every unit greater than 1 is a positive power of µ0.
If ν is a unit and 0 < ν < 1, then ν−1 is a unit with ν−1 > 1, so by what we just showed it follows that

ν−1 = µn for some n > 0. We then have ν = µ−n. Now if ν < 0, notice that −ν is a unit with −ν > 0, so
we finish by applying what we just showed. Thus

U(OQ(
√
d)) = {±µn0 : n ∈ Z}

For the final claim, define a function ψ : Z× (Z/2Z)→ U(OQ(
√
d)) by letting

ψ(n, k) = (−1)kµn0
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Notice that ψ is well-defined because (−1)k = 1 when k is even and (−1)k = −1 when k is odd. It is
straightforward to check that ψ is a homomorphism of abelian groups (where the left-hand side is viewed
additively and the right-hand side is viewed multiplicatively). Since µn0 > 1 for all n ∈ N+, we have
ker(ψ) = (0, 0), so ψ is injective. We know that ψ is surjective from above, so ψ is an isomorphism.

5.4 Factorizations

Let K = Q(
√
−5). Notice that −5 6≡ 1 (mod 4), so

OK = {a+ b
√
−5 : a, b ∈ Z}

Working in OK , we have
2 · 3 = 6 = (1 +

√
−5)(1−

√
−5)

so it looks like we have two distinct factorizations of 6. Let’s check that these really are two different
factorizations into irreducibles. Now N(2) = 4, so if α, β ∈ OK are such that 2 = αβ, then

4 = N(2) = N(αβ) = N(α)N(β)

Since d < 0, all norms are nonnegative, so N(α), N(β) ∈ {1, 2, 4}. Notice that there are no elements of norm
2 because a2 + 5b2 = 2 has no integer solutions. It follows that either N(α) = 1 or N(β) = 1, so one of α
or β is a unit. Therefore, 2 irreducible in OK . Since a2 + 5b2 = 3 also has no integer solutions, the same
argument shows that 3 is irreducible in OK as well. Now notice that

N(1 +
√
−5) = 6 N(1−

√
−5) = 6

As above, suppose that 1 +
√
−5 = αβ. We then have

6 = N(1 +
√
−5) = N(αβ) = N(α)N(β)

Since we just saw that there are no elements of norm 2 or 3, either N(α) = 1 or N(β) = 1. Thus, either α is
a unit or β is a unit, and hence 1 +

√
−5 is irreducible in OK . The argument that 1−

√
−5 is irreducible in

OK is identical. Finally, note that the only units in OK are ±1, so these really are two distinct factorizations.
To get more out of this example, we have that 2 is irreducible in OK and that

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

hence 2 | (1 +
√
−5)(1 −

√
−5) in OK . Now if 2 | (a + b

√
−5), say 2(c + d

√
−5) = a + b

√
−5, then 2c = a

and 2d = b, hence we would have both 2 | a and 2 | b in Z. It follows that 2 - (1 +
√
−5) and 2 - (1−

√
−5)

in OK , so 2 is not prime in OK . Thus, in the ring OK , the notions of irreducible and prime are distinct.
Before we jump into general theory about what can be salvaged in these rings, we first try to quarantine

off the rings which already behave well by classifying a few of these rings which do happen to be Euclidean
domains.

Lemma 5.4.1. Let d ∈ N+ be squarefree and let K = Q(
√
d). Suppose that for all α, β ∈ OK with β 6= 0,

there exists γ ∈ OK such that ∣∣∣∣N (αβ − γ
)∣∣∣∣ < 1

We then have that |N | is a Euclidean function on OK .
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Proof. Let α, β ∈ OK with β 6= 0. By assumption, we may fix γ ∈ OK with∣∣∣∣N (αβ − γ
)∣∣∣∣ < 1

Let ρ = α− βγ ∈ OK . Notice that α = βγ + ρ and

|N(ρ)| = |N(α− βγ)|

=
∣∣∣∣N (β · (αβ − γ

))∣∣∣∣
=
∣∣∣∣N(β) ·N

(
α

β
− γ
)∣∣∣∣

= |N(β)| ·
∣∣∣∣N (αβ − γ

)∣∣∣∣
< |N(β)|

Thus, |N | is a Euclidean function on OK .

Lemma 5.4.2. If a, b ∈ R with a, b ≥ 0, then |a− b| ≤ max{a, b}.

Proof. If 0 ≤ b ≤ a, then 0 ≤ a− b ≤ a, hence

|a− b| = a− b ≤ a = max{a, b}

On the other hand,if 0 ≤ a ≤ b, then −b ≤ a− b ≤ 0, hence

|a− b| = −(a− b) = b− a ≤ b = max{a, b}

Theorem 5.4.3. Let d ∈ {−2,−1, 2, 3} and let K = Q(
√
d). The function |N | is a Euclidean function on

OK .

Proof. Suppose that α, β ∈ OK with β 6= 0. We have α
β ∈ K, so we may write α

β = s+ t
√
d for some s, t ∈ Q.

Fix integers m,n ∈ Z closest to s, t ∈ Q respectively, i.e. fix m,n ∈ Z so that |s −m| ≤ 1
2 and |t − n| ≤ 1

2 .
Let γ = m+ n

√
d ∈ OK . We then have∣∣∣∣N (αβ − γ

)∣∣∣∣ = |N((s+ t
√
d)− (m+ n

√
d))|

= |N((s−m) + (t− n)
√
d)|

= |(s−m)2 − d(t− n)2|

Now if d ∈ {−2,−1}, then ∣∣∣∣N (αβ − γ
)∣∣∣∣ = |(s−m)2 − d(t− n)2|

≤ (s−m)2 + |d| · (t− n)2

≤ 1
4

+
|d|
4

< 1
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If d ∈ {2, 3}, then∣∣∣∣N (αβ − γ
)∣∣∣∣ = |(s−m)2 − d(t− n)2|

≤ max{(s−m)2, d(t− n)2} (by the previous lemma)

≤ max
{

1
4
,
d

4

}
< 1

Therefore, |N | is a Euclidean function by the above lemma.

Theorem 5.4.4. Let d ∈ {−11,−7,−3, 5, 13} and let K = Q(
√
d). The function |N | is a Euclidean function

on OK .

Proof. Notice that d ≡ 1 (mod 4) in all of these cases. Suppose that α, β ∈ OK with β 6= 0. We have α
β ∈ K,

so we may write α
β = s+ t

√
d for some s, t ∈ Q. Fix n ∈ Z closest to 2t ∈ Q. We then have |2t− n| ≤ 1

2 and
hence ∣∣∣t− n

2

∣∣∣ ≤ 1
4

Let m ∈ Z be the integer closest to 2s ∈ Q which has the same parity as n. We then have |2s−m| ≤ 1 and
hence ∣∣∣s− m

2

∣∣∣ ≤ 1
2

Let γ = m
2 + n

2

√
d ∈ OK . We then have∣∣∣∣N (αβ − γ

)∣∣∣∣ =
∣∣∣N ((s+ t

√
d)−

(m
2

+
n

2

√
d
))∣∣∣

=
∣∣∣N ((s− m

2

)
+
(
t− n

2

)√
d
)∣∣∣

=
∣∣∣∣(s− m

2

)2

− d
(
t− n

2

)2
∣∣∣∣

Now if d ∈ {−11,−7,−3}, then ∣∣∣∣N (αβ − γ
)∣∣∣∣ = |(s− m

2
)2 − d

(
t− n

2

)2

|

≤
(
s− m

2

)2

+ |d| ·
(
t− n

2

)2

≤ 1
4

+
|d|
16

< 1

If d ∈ {5, 13}, then ∣∣∣∣N (αβ − γ
)∣∣∣∣ = |(s− m

2
)2 − d(t− n

2
)2|

≤ max{
(
s− m

2

)2

, d
(
t− n

2

)2

}

≤ max{1
4
,
d

16
}

< 1

Therefore, |N | is a Euclidean function by the above lemma.
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Corollary 5.4.5. Let d ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 13} and let K = Q(
√
d). The ring OK is a Euclidean

domain (with Euclidean function |N |), hence OK is a PID and a UFD.

Proposition 5.4.6. Let K = Q(
√

10). The ring OK is not a UFD.

Proof. Notice that
2 · 3 = 6 = (4 +

√
10)(4−

√
10)

We first need to show that each of these factors are irreducible. Suppose that α, β ∈ OK with 2 = αβ. We
then have

4 = N(2) = N(αβ) = N(α)N(β)

Thus, N(α), N(β) ∈ {±1,±2,±4}. If either N(α) = ±1 or N(β) = ±1, then either α or β is a unit. Thus,
we need only show that there is no α ∈ OK of norm ±2. Suppose that α = a + b

√
10 where a, b ∈ Z and

N(α) = ±2. We then have that a2− 10b2 = ±2, so in particular we have a2 ≡ ±2 (mod 10). Looking at the
squares modulo 10 we get

0 1 4 9 6 5 6 9 4 1

Thus, there is no a ∈ Z with a2 ≡ ±2 (mod 10). It follows that there is no α ∈ OK with N(α) = ±2, and
hence α is irreducible in OK . Similarly, 3 is irreducible in OK because there is no α ∈ OK with N(α) = ±3
(such an α would imply the existence of an a ∈ Z with a2 ≡ ±3 (mod 10)). Now N(4±

√
10) = 16− 10 = 6,

so if 4 ±
√

10 was reducible, this would imply that there was an element of OK with norm either ±2
or ±3, which we just showed did not exist. Therefore, each of the above factors are irreducible in OK .
Finally, notice that neither 2 nor 3 is an associate of 4 ±

√
10 because if α = βµ for a unit µ, then

N(α) = N(β)N(µ) = ±N(β).

Theorem 5.4.7. The only integer solutions to the equation x3 = y2 + 2 are (3,±5).

Proof. Suppose that (x, y) is a solution to y2 + 2 = x3. Suppose first that y is even. Working in Z, we then
have that 2 | (y2 + 2), hence 2 | x3 and so 2 | x as 2 is prime. It follows that 8 | x3, and thus 8 | (y2 + 2).
Thus, 4 | (y2 + 2), so as 4 | y2 (because y is even), we conclude that 4 | 2, which is a contradiction.

Suppose then that y is odd. Let R = OQ(
√
−2) = Z[

√
−2]. We know that R is a PID and UFD from

above. Working in the ring R, we then have

x3 = (y +
√
−2)(y −

√
−2)

We claim claim y +
√
−2 and y −

√
−2 are relatively prime in R. Suppose that δ ∈ R is a common divisor

of y+
√
−2 and y−

√
−2. We would then have that δ divides the sum (y+

√
−2) + (y−

√
−2) = 2y and the

difference (y +
√
−2)− (y −

√
−2) = 2

√
−2. Taking norms, we conclude that

N(δ) | 4y2 and N(δ) | 8

in Z. Since y is odd, it follows that N(δ) | 4 in Z and hence N(δ) ∈ {1, 2, 4} (recall that the norm of
every element of R is nonnegative). A simple check shows that elements of R of norm 2 are ±

√
−2 and the

elements of R of norm 4 are ±2. Notice that ±2 does not divide y +
√
−2 in R (because the coefficient of√

−2 is odd) and also ±
√
−2 does not divide y+

√
−2 in R (because

√
−2(a+ b

√
−2) = −2b+ a

√
−2 and y

is odd). It follows that the only common divisors of y+
√
−2 and y−

√
−2 are ±1, so y+

√
−2 and y−

√
−2

are relatively prime in R.
Now recall that R is a UFD, so since the product (y +

√
−2)(y −

√
−2) is a cube in R and the factors

are relatively prime, it follows that there exists µ ∈ U(R) and α ∈ R with

y +
√
−2 = µα3
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Since U(R) = {±1}, all elements of U(R) are cubes in R, so we may assume that µ = 1. Letting α = a+b
√
−2

with a, b ∈ Z, we have

y +
√
−2 = α3

= (a+ b
√
−2)3

= a3 + 3a2b
√
−2− 6ab2 − 2b3

√
−2

= (a3 − 6ab2) + (3a2b− 2b3)
√
−2

Comparing the coefficients of
√
−2, we conclude that

1 = 3a2b− 2b3 = b(3a2 − 2b2)

Thus, b | 1 in Z, so b = ±1. If b = −1, then 1 = −(3a2− 2), so 3a2 = 1, a contradiction. Suppose that b = 1.
We then have 1 = 3a2 − 2, so a = ±1. Thus either

y +
√
−2 = (1 +

√
−2)3 = 1 + 3

√
−2− 6− 2

√
−2 = −5 +

√
−2

or
y +
√
−2 = (−1 +

√
−2)3 = −1 + 3

√
−2 + 6− 2

√
−2 = 5 +

√
−2

It follows that y = ±5. Hence x3 = 27 and so x = 3. Checking the pairs (3,±5), we see that indeed they
are solutions.

5.5 The Eisenstein Integers

Let K = Q(
√
−3) = Q(ζ3) and let R = OK . We know that

R = Z[ζ3] = Z[ζ6]

and in this section we will view R = Z[ζ3]. Now we know that [K : Q] = 2 and that ζ3 is a root of
x3 − 1 = (x− 1)(x2 + x+ 1). Thus, ζ3 is a root of x2 + x+ 1. Since this polynomial has no rational roots, it
is irreducible over Q and hence is the minimal polynomial of ζ3 over Q. It follows that {1, ζ3} form a basis
for K over Q and that

R = {a+ bζ3 : a, b ∈ Z}

To see how to multiply elements of R, notice that

ζ2
3 + ζ3 + 1 = 0

from above, so
ζ2
3 = −1− ζ3

Therefore, given a, b, c, d ∈ ζ3, we have

(a+ bζ3)(c+ dζ3) = ac+ adζ3 + bcζ3 + bdζ2
3

= ac+ adζ3 + bcζ3 + bd(−1− ζ3)
= (ac− bd) + (ad+ bc− bd)ζ3



5.5. THE EISENSTEIN INTEGERS 97

Also, given a, b ∈ Z we have

N(a+ bζ3) = N

(
a+ b ·

(
−1 +

√
−3

2

))
= N

((
a− b

2

)
+
b

2
·
√
−3
)

=
(
a− b

2

)2

+ 3 ·
(
b

2

)2

= a2 − ab+
b2

4
+

3b2

4
= a2 − ab+ b2

Written in these terms, since ζ6 = 1 + ζ3, notice that

U(R) = {1,−1, ζ3,−ζ3, 1 + ζ3,−1− ζ3}

Lemma 5.5.1. Let α ∈ R. If N(α) is prime in Z, then α is irreducible and prime in R.

Proof. Same as in the Gaussian Integers.

Notice that N(2) = 4. Suppose that 2 = αβ where α, β ∈ R. We then must have N(α) ∈ {1, 2, 4}.
Notice that N(α) = 2 is impossible as follows. If a, b ∈ Z, then

N(a+ b
√
−3) = a2 + 3b2

and there are no solutions to a2+3b2 = 2 in Z. Also, if a, b ∈ Z are both odd, then we still get a contradiction
because

a2

4
+ 3 · b

2

4
= 2

implies that a2 + 3b2 = 8 which has no solutions in odd integers. Thus, 2 is irreducible in R.
The case for 3 is more interesting. We clearly have

3 = (−1) · (
√
−3)2

where N(
√
−3) = 3, so

√
−3 is irreducible in R. Now

√
−3 = 1 + 2ζ3

so we can write
3 = (−1) · (1 + 2ζ3)2

Another way to factor 3 is as follows. Consider the polynomial x3 − 1. We know the three roots, so

x3 − 1 = (x− 1)(x− ζ3)(x− ζ2
3 )

And hence
x2 + x+ 1 = (x− ζ3)(x− ζ2

3 )

Plugging 1 into both sides we conclude that

3 = (1− ζ3)(1− ζ2
3 )

Now we know that
1− ζ2

3 = 1− (−1− ζ3) = 2 + ζ3
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so
3 = (1− ζ3)(2 + ζ3)

Using the fact that R is a UFD, it follows that 1− ζ3, 2 + ζ3, and 1 + 2ζ3 must all be associates. Recall that
R has 6 units and that any associate of an element of norm 3 will also have norm 3. In fact, R has exactly
6 elements of norm 3, namely

−1 + ζ3 2 + ζ3 −2− ζ3 1− ζ3 1 + 2ζ3 −1− 2ζ3

Since there are 6 such elements and 6 units, these all must be associates in R. Partially for historical reasons,
and partially because of attempts to solve Fermat’s Last Theorem (for all values of n), one typically chooses
1− ζ3 as the representative from this list. From above, we know that

3 = (1− ζ3)(2 + ζ3)

After some work, one discovers that
2 + ζ3 = (1 + ζ3)(1− ζ3)

so
3 = (1 + ζ3) · (1− ζ3)2

where 1 + ζ3 ∈ U(R) and 1− ζ3 is irreducible in R. Compare this to the fact that in the Gaussian Integers
Z[i] we have 2 = (−i) · (1 + i)2 or 2 = i · (1− i)2.

Recall that we found all integers solutions to x2 + y2 = z2 (i.e. the Pythagorean triples) by factoring
the left-hand side over Z[i]. Fermat’s Last Theorem is the claim that 2 is the largest exponent n for which
xn + yn = zn has solutions in N+. It is not hard to see that in order to prove this, it suffices to show that
x4 +y4 = z4 has no solutions in N+ and that xp+yp = zp has no solutions in N+ for odd primes p. The first
of these can be handled using elementary techniques or the classification of Pythagorean triples. However,
the latter is very difficult for any odd prime p. By working in the Eisenstein integers, it is possible to prove
Fermat’s Last Theorem for exponent 3.

Before diving into this (difficult) result, we make a few general comments about attempted proofs of
Fermat’s Last Theorem. Let p be an odd prime. Instead of working with the equation xp + yp = zp, we
instead work with the more symmetric equation xp + yp + zp = 0 over Z.

Lemma 5.5.2. Let p be an odd prime. The equation xp + yp = zp has a solution in N+ if and only if
xp + yp + zp = 0 has a solution in Z\{0}.

Proof. If x, y, z ∈ N+ satisfy xp + yp = zp, we then have xp + yp + (−z)p = 0 and each of x, y,−z ∈ Z\{0}
(here we are using the fact that p is odd). Conversely, suppose that x, y, z ∈ Z\{0} satisfy xp + yp + zp = 0.
It is not possible that all of terms are positive, and it is not possible that all of the terms are negative. If
one of the terms is negative and the other two are positive, we can multiply through by (−1)p = −1 to find
another solution with two terms negative and one term positive. Bringing the two negative terms to the
other side gives a solution to ap + bp = cp where a, b, c ∈ N+.

Suppose that x, y, z ∈ Z\{0} are such that xp + yp + zp = 0. If we are trying to rule out solutions in
Z\{0}, it suffices to rule out such solutions where gcd(x, y, z) = 1 because we can always divide through
by a greatest common divisor cubed to get another solution with this property. Furthermore, notice that if
gcd(x, y) 6= 1 and q is a common prime divisor of x and y, then q | zp and hence q | z, so gcd(x, y, z) 6= 1. A
similar argument works for any other pair. Thus, we may assume that x, y, z are relatively prime in pairs.
From here, most attempts to solve Fermat’s Last Theorem break into cases. Case 1 is where p does not
divide any of x, y, or z, while Case 2 is where p divides exactly one of x, y, or z (this suffices by the above
comments). Case 1 is typically easier than Case 2.

We now turn our attention to the case where p = 3. It turns out that Case 1 can be handled by elementary
means. Suppose that x, y, z ∈ Z\{0} with x3 + y3 + z3 = 0. Just as looking modulo 4 is a smart choice for
sums of squares, it turns out that looking modulo 9 is a smart choice here.
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Lemma 5.5.3. If a ∈ Z and 3 - a, then a3 ≡ ±1 (mod 9).

Proof. This can be checked by direct computation modulo 9, but here is a faster argument that we will
generalize below. We have a ≡ ±1 (mod 3). Using Lemma 2.7.2, we conclude that a3 ≡ (±1)3 (mod 32),
which implies that a3 ≡ ±1 (mod 9).

Now it is also easily seen that if 3 | a, then a3 ≡ 0 (mod 9). In other words, the cubes modulo 9 are
exactly −1, 0, 1. Suppose now that x, y, z ∈ Z\{0} with x3 + y3 + z3 = 0. Suppose that none of x, y, z is
divisible by 3. Working modulo 9, the previous lemma tells us that

±1± 1± 1 ≡ 0 (mod 9)

which is a contradiction. Hence, x3 + y3 + z3 = 0 has no Case 1 solutions.
Ruling out Case 2 solutions is much more difficult. Suppose that we have a Case 2 solution where x, y, z

are relatively prime and where 3 | z (we may assume that 3 | z by symmetry and renaming of terms if
necessary). We then have that

x3 + y3 = −z3

The key fact is that we can factor the left-hand side in R. We have

x3 + y3 = (x+ y)(x2 − xy + y2)

= (x+ y)(x+ ζ3y)(x+ ζ2
3y)

where we have used the fact that ζ3 + ζ2
3 = −1. Thus

(x+ y)(x+ ζ3y)(x+ ζ2
3y) = −z3

One might now be tempted to show that the factors on the left are relatively prime in R to argue that they are
cubes. However, this doesn’t work. In what follows, let π = 1− ζ3 ∈ R and note that π is irreducible/prime
in R from above. We know that 3 | z, so as 3 = (1 + ζ3) · π2, it follows that π | z. Thus, π divides the
right-hand side, so as π is prime, it must divide one of the factors on the left. It is not difficult to see that
the three factors on the left are congruent modulo π, so since one of the factors on the left is divisible by
π, all three must be. However, this suggests a potential line of attack by removing the common factor of π
across all terms. Dividing both sides by π3 we obtain

x+ y

π
· x+ ζ3y

π
· x+ ζ2

3y

π
= −

( z
π

)3

Using the fact that x, y, z are relatively prime, one can show that the factors on the left are pairwise relatively
prime in R. When multiplied together, these pairwise relatively prime elements equal a unit times a cube,
so each of them must be units times cubes. From here, the key step is to notice that

ζ2
3 ·
(
x+ y

π

)
+
(
x+ ζ3y

π

)
+ ζ3 ·

(
x+ ζ2

3y

π

)
= 0

We now have a sum of units times cubes equal to 0 in R.
Recapping, the big picture idea is that if we have a solution, then we can divide through by π to obtain

a “smaller” solution. Thus, the plan is to argue that since you can not divide by π indefinitely, there must
not be a solution at all.

Now some problems worries immediately arise. Even though x, y, z ∈ Z, we started to work with elements
of R quite quickly and our “new solution” in R involving units.

, and then hope to do some manipulations to argue that we obtain a “smaller” solution in some sense.
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In order to make this work, we have to generalize the whole apparatus to working in R throughout. Thus,
we instead aim to show that

α3 + β3 = γ3

has no solutions in R with all three of α, β, and γ nonzero. To add some nice symmetry to the problem, we
instead show that

α3 + β3 + γ3 = 0

has no solutions in R with all three of α, β, and γ nonzero (this suffices because (−1)3 = −1 and so we
can absorb the −1 into the cube). In fact, in order to prove this, we will need to prove a slightly stronger
theorem involving some units (see below).

By generalizing the problem in this way, we can work in R throughout. Our first step is to prove that
in such an equation, at least one of α, β, or γ is divisible by π, which is the analogue of proving one of the
terms is divisible by 3 in the integer case. We first prove an important lemma (again think of π as playing
a similar role to 3).

Lemma 5.5.4. For all α ∈ R, either α ≡ 1 (mod π), α ≡ 0 (mod π), or α ≡ −1 (mod π).

Proof. Let α ∈ R be arbitrary. Since R is a Euclidean domain, we may fix γ, ρ ∈ R with α = γπ + ρ and
either ρ = 0 or N(ρ) < N(π). Notice that N(π) = 3 and there are no elements of R with norm 2 (as
discussed above), so either ρ = 0 or N(ρ) = 1. Since the elements of norm 1 are units, it follows that

ρ ∈ {0} ∪ U(R) = {0, 1,−1, ζ3, 1 + ζ3,−ζ3,−1− ζ3}

Now π | (α − ρ), so α ≡ ρ (mod π). Thus, it suffices to show each of the elements in the above set are
congruent to one of −1, 0, 1 modulo π. Notice that

ζ3 ≡ 1 (mod π)

trivially because ζ3 − 1 = −π. Thus, 1 + ζ3 ≡ 2 ≡ −1 (mod π) because π | 3. The other two are now
immediate.

Corollary 5.5.5. For any β ∈ R, π | (β − ζ3β3).

Proof. Let β ∈ R. By the previous lemma, we know that one of β ≡ 1 (mod π), β ≡ 0 (mod π), or β ≡ −1
(mod π) is true. If β ≡ 1 (mod π), then

β − ζ3β3 ≡ 1− ζ3 ≡ 0 (mod π)

If β ≡ 0 (mod π), then
β − ζ3β3 ≡ 0− 0 ≡ 0 (mod π)

If β ≡ −1 (mod π), then
β − ζ3β3 ≡ −1 + ζ3 ≡ 0 (mod π)

The result follows.

Lemma 5.5.6. Let α ∈ R with α 6≡ 0 (mod π). We have the following:

1. α3 ≡ ±1 (mod π4)

2. α3 ≡ ±1 (mod 9)
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Proof. We have
3 = (1 + ζ3) · π2

Since (1 + ζ3)−1 = −ζ3, it follows that
π2 = −3ζ3

Since α 6≡ 0 (mod π), we know that either α ≡ 1 (mod π) or α ≡ −1 (mod π).
Suppose that α ≡ 1 (mod π). Fix β ∈ R with α = 1 + βπ. We then have

α3 = (1 + βπ)3

= 1 + 3βπ + 3β2π2 + β3π3

= 1 + 3β2π2 + 3βπ + β3 · (−3ζ3)π

= 1 + 3β2π2 + 3π(β − ζ3β3)

Now π2 | 3 and π | (β − ζ3β3) by the previous lemma, so the final two summands are divisible by π4. Thus
α3 ≡ 1 (mod π4).

Suppose that α ≡ −1 (mod π). Fix β ∈ R with α = 1 + βπ. We then have

α3 = (−1 + βπ)3

= −1 + 3βπ − 3β2π2 + β3π3

= −1 + 3β2π2 − 3βπ + β3 · (−3ζ3)π

= −1 + 3β2π2 − 3π(β − ζ3β3)

Now π2 | 3 and π | (β − ζ3β3) by the previous lemma, so the final two summands are divisible by π4. Thus
α3 ≡ −1 (mod π4).

The latter follows from the fact that 9 = (1 + ζ3)2 · π4 = −ζ3 · π4, so 9 and π4 are associates.

We now state the big theorem involving units.

Theorem 5.5.7. There do not exist pairwise relatively prime nonzero α, β, γ ∈ R and µ ∈ U(R) such that
π | γ and α3 + β3 + µγ3 = 0.

Before diving into the proof, we obtain the corollaries.

Corollary 5.5.8. If α, β, γ ∈ R satisfy α3 + β3 + γ3 = 0, then at least one of α, β, γ equals 0.

Proof. Suppose that there exist α, β, γ ∈ R\{0} with α3 + β3 + γ3 = 0. Fix a greatest common divisor δ of
{α, β, γ} (recall these exists in PIDs even for multiple elements). Note that δ 6= 0 because α, β, and γ are
nonzero. Fix α′, β′, γ′ ∈ R with α = δα′, β = δβ′, and γ = δ = γ′. We then have

(α′)3 + (β′)3 + (γ′)3 = 0

A simple check shows that the only common divisors of α′, β′, and γ′ are units. Now if any two of these
have a common prime divisor, then it must divide the other, so in fact α′, β′, and γ′ are pairwise relatively
prime.

We now argue that at least one of α′, β′, or γ′ is divisible by π. Suppose not. Reducing the equation
modulo 9 in R, we then have

±1± 1± 1 ≡ 0 (mod 9)

Since 9 - ±1 and 9 - ±3 in R, this is a contradiction. Therefore, at least of α′, β′, or γ′ is divisible by π.
This contradicts the previous theorem with µ = 1 (changing the role of the terms if necessary).

Corollary 5.5.9. If x, y, z ∈ Z satisfy x3 + y3 = z3, then at least one of x, y, z equals 0.
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Proof. We have x3 + y3 + (−z)3, so we can apply the previous corollary.

We now jump into a proof of the theorem.

Proof of 5.5.7. exist pairwise relatively prime nonzero α, β, γ ∈ R and µ ∈ U(R) such that π | γ and
α3 + β3 + µγ3 = 0. Pick such a choice one with ordπγ as small as possible, say ordπγ = n where n ∈ N+.
Notice that we must have ordπα = 0 and ordπβ = 0 since we are assuming that the terms are relatively
prime.

We first claim that n ≥ 2. Suppose instead that n = 1 and write γ = π · γ′ where π - γ′.

α3 + β3 + π3 · (γ′)3 = 0

Reducing this equation modulo 9, we conclude that

±1± 1± π3 ≡ 0 (mod 9)

Since
π3 = −3− 6ζ

it follows that
±1± 1± (3 + 6ζ) ≡ 0 (mod 9)

A simple check of norms shows that this is impossible. Therefore, n ≥ 2.
Now we have α3 + β3 + γ3 = 0 and π | γ. It follows that π | (α3 + β3). Since

α3 + β3 = (α+ β)(α+ ζ3β)(α+ ζ2
3β)

and π is prime, we conclude that π divides one of the terms on the right. However, notice that

(α+ β)− (α+ ζ3β) = (1− ζ3)β = πβ

so
α+ β ≡ α+ ζ3β (mod π)

We also have
(α+ ζ3β)− (α+ ζ2

3β) = ζ3β − ζ2
3β = πζ3β

so
(α+ ζ3β) ≡ (α+ ζ2

3β) (mod π)

Combining the last two, we conclude that

α+ β ≡ α+ ζ2
3β (mod π)

Thus, all three of the factors are congruent modulo π. Since π divides at least one of them it follows that π
divides all of them.

Now we claim that the elements
α+ β

π
,
α+ ζ3β

π
,
α+ ζ2

3β

π

are pairwise relatively prime. Suppose that δ is a common divisor or the first two. We then have that δ
divides their difference, which is (1−ζ3)β

π = β. We also have that δ divides the second minus ζ3 times the
first, which is (1−ζ3)α

π = α. Since α and β are relatively prime, it follows that δ is a unit. The other two
pairs are treated similarly.
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Dividing both sides of the equation by π3, we obtain

α+ β

π
· α+ ζ3β

π
· α+ ζ2

3β

π
= (−µ) ·

(γ
π

)3

where each of the factors on the left are pairwise relatively prime. Since the product on the left is a unit
times a cube, and each of the factors on the left are pairwise relatively prime, it follows that each of these
factors are units times cubes (here we are using that R is a UFD). Thus we can write

α+ β

π
= ε1ρ

3 α+ ζ3β

π
= ε2σ

3 α+ ζ2
3β

π
= ε3τ

3

where the εi ∈ R are units. Notice that ρ, σ, and τ are pairwise relatively prime. Since n ≥ 2, the right-hand
side is still divisible by π, so at least of σ, ρ, τ is divisible π. By relabeling, we can assuming that π | τ .
Notice that π - ρ and π - σ because they are relatively prime. Thus, we must have ordπτ = n− 1.

Now

ζ2
3 ·

α+ β

π
+
α+ ζ3β

π
+ ζ3 ·

α+ ζ2
3β

π
= 0

so
ζ2
3ε1ρ

3 + ε2σ
3 + ζ3ε3τ

3 = 0

Dividing through by the unit ζ2
3ε1, we obtain

ρ3 + ε4σ
3 + ε5τ

3 = 0

To finish the argument in contradiction, it suffices to show that ε4 = ±1. Reducing modulo π3, we obtain

±1± ε4 ≡ 0 (mod π3)

A simple check of units shows that this is only possible if ε4 = ±1. Absorbing the negative, we obtain

ρ3 + σ3 + ε5τ
3 = 0

where ordπτ = n− 1, a contradiction.
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Chapter 6

Quadratic Reciprocity

6.1 Quadratic Residues and the Legendre Symbol

Definition 6.1.1. Let n ∈ N+ and let a ∈ Z with gcd(a, n) = 1. We say that a is a quadratic residue
modulo n if there exists x ∈ Z with x2 ≡ a (mod n) (equivalently, if a is a square in U(Z/nZ)).

Definition 6.1.2. Suppose that p ∈ N+ is prime. Define Qp ⊆ U(Z/pZ) to be

Qp = {a : a is a quadratic residue modulo p}

so Qp is the set of cosets of quadratic residues.

We have already studied quadratic residues if you don’t remember doing so. In Homework 4, Problem 6,
and Homework 5, Problem 1, you proved the following.

Theorem 6.1.3. Suppose that p,m ∈ N+ where p is prime. Let d = gcd(m, p− 1). Define ψ : U(Z/pZ)→
U(Z/pZ) by letting ψ(x) = xm.

1. ψ is a group homomorphism.

2. | ker(ψ)| = d.

3. |range(ψ)| = p−1
d .

4. Given a ∈ U(Z/pZ), we have a ∈ range(ψ) if and only if a(p−1)/d ≡ 1 (mod p).

If p is an odd prime and m = 2, we have d = gcd(2, p− 1) = 2, so we obtain the following fundamental
corollary (which we reprove here).

Theorem 6.1.4. Suppose that p ∈ N+ is an odd prime. Define ψ : U(Z/pZ)→ U(Z/pZ) by letting ψ(x) =
x2.

1. ψ is a group homomorphism.

2. | ker(ψ)| = 2 (so ker(ψ) = {1,−1}).

3. |range(ψ)| = p−1
2 .

4. Given a ∈ U(Z/pZ), we have a ∈ range(ψ) if and only if a(p−1)/2 ≡ 1 (mod p).

We now pull apart this theorem into two important corollaries.

105
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Proposition 6.1.5. Suppose that p ∈ N+ is an odd prime. We then have that Qp is a (multiplicative)
subgroup of U(Z/pZ) and that |Qp| = p−1

2 .

Proof. We have Qp = range(ψ), so Qp is a subgroup because ψ is a group homomorphism. The second result
is immediate.

One can also prove the previous proposition directly without working through the general theory. One
can show that Qp is a subgroup by directly arguing that the product of two squares is a square, and that
the multiplicative inverse of a square is also a square (and clearly 1 is a square). The second part can also
be argued directly as follows. Since a2 ≡ (−a)2 (mod p), we have a2 ≡ (p− a)2 (mod p), so determine the
squares modulo p it suffices to consider the following squares:

12 22 32 . . . (p−1
2 )2

Also, if a2 ≡ b2 (mod p), then p | (a2 − b2), so p | (a− b)(a+ b), hence either p | (a− b) or p | (a+ b) (since
p is prime), and thus either a ≡ b (mod p) or a ≡ −b (mod p). Thus, the above p−1

2 squares and pairwise
not congruent modulo p.

Restating part 4 of the above theorem, we obtain the following fundamental characterization of quadratic
residues modulo p.

Corollary 6.1.6 (Euler’s Criterion). Let p be an odd prime. A number a ∈ Z with p - a is a quadratic
residue modulo p if and only if

a(p−1)/2 ≡ 1 (mod p)

Proof. This is immediate from the above theorem, but we recall the proof.
Let a ∈ Z with p - a. Suppose first a is a quadratic residue modulo p. Fix b ∈ Z with p - b and b2 ≡ a

(mod p). We then have

a(p−1)/2 ≡ (b2)(p−1)/2 (mod p)

≡ bp−1 (mod p)
≡ 1 (mod p)

where the last line follows from Fermat’s Little Theorem.
We now prove the converse by showing if a is not a quadratic residue modulo p, then a(p−1)/2 6≡ 1

(mod p). This proof is a clever counting argument using roots of polynomials. By the direction we just
proved, if a is a quadratic residue modulo p, then a is a root of the polynomial x(p−1)/2−1 ∈ Z/pZ[x]. Since
Z/pZ is a field, the polynomial x(p−1)/2 − 1 has at most p−1

2 many roots in Z/pZ. Since |Qp| = p−1
2 from

above, we conclude that these must be all of the roots of x(p−1)/2 − 1 in Z/pZ. Therefore, if a /∈ Qp, then a
is not a root of this polynomial, and hence a(p−1)/2 6≡ 1 (mod p).

Euler’s Criterion establishes an important characterization of when a an a ∈ Z is a quadratic residue
modulo an odd prime p. Since raising a number to a power is computationally quite fast (using repeated
squaring), this gives a satisfactory computational solution that is significantly more efficient that simply
trying all of the squares. However, there is much more that can be said, including important structural
connections about when a number a is quadratic residue modulo various primes.

Before jumping into these important results, we first say a bit about quadratic residues modulo n where
n is not a prime. Suppose that n ∈ N+ has prime factorization

n = pk11 p
k2
2 · · · p

k`
`

Let a ∈ Z with gcd(a, n) = 1. Using the Chinese Remainder Theorem, it is straightforward to see that a
is a quadratic residue modulo n if and only a is a quadratic residue modulo each pkii . On the homework,
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you will show that for an odd prime p, we have that a is a quadratic residue modulo pk if and only if a is a
quadratic residue modulo p. It is also possible to determine the quadratic residues modulo powers of 2 using
the structure of U(Z/2kZ) (see later homework... probably). Thus, we have reduced the problem to one of
determining if a is a quadratic residue modulo odd primes.

Definition 6.1.7. Let p ∈ N+ be an odd prime. For any a ∈ Z we define

(
a

p

)
=


1 if a is a quadratic residue modulo p
−1 if a is a quadratic nonresidue modulo p
0 if p | a

This notation is called the Legendre symbol.

Proposition 6.1.8. Suppose that p is an odd prime and a ∈ Z. We have(
a

p

)
≡ a(p−1)/2 (mod p)

Proof. If p | a, then the left-hand side is 0 and the right-hand side is divisible by p, so the congruence is
satisfied. Suppose then that p - a. If a is quadratic residue modulo p, then (ap ) = 1 by definition and
a(p−1)/2 ≡ 1 (mod p) by Euler’s Criterion. Suppose then that a is not a quadratic residue modulo p. By
definition, we have (ap ) = −1. Now

(a(p−1)/2)2 = ap−1 ≡ 1 (mod p)

by Fermat’s Little Theorem. Using Proposition 2.5.2, it follows that either

a(p−1)/2 ≡ 1 (mod p) or a(p−1)/2 ≡ −1 (mod p)

Since a is not a quadratic residue modulo p, Euler’s Criterion tells us that a(p−1)/2 6≡ 1 (mod p). Thus, we
must have a(p−1)/2 ≡ −1 (mod p).

We now have another proof of an old fact.

Corollary 6.1.9. If p ∈ N+ is an odd prime, then(
−1
p

)
= (−1)(p−1)/2

Thus, −1 is a quadratic residue modulo p exactly when p ≡ 1 (mod 4).

Proof. We have p - −1 because p is prime. By the previous Corollary, we know that(
−1
p

)
≡ (−1)(p−1)/2 (mod p)

Since both the sides of this equation are ±1 and 1 6≡ −1 (mod p) (because p is an odd prime), it follows that(
−1
p

)
= (−1)(p−1)/2

To finish the argument notice that if p ≡ 1 (mod 4), then p−1
2 is even so (−1)(p−1)/2 = 1, while if p ≡ 3

(mod 4), then p−1
2 is odd so (−1)(p−1)/2 = −1
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Corollary 6.1.10. There are infinitely many primes p ∈ N+ with p ≡ 1 (mod 4).

Proof. Notice that at least one such prime exists, namely 5. Suppose now that p1, p2, . . . , pk are primes with
pi ≡ 1 (mod 4). Consider the number

n = (2p1p2 · · · pk)2 + 1

Notice that n ≥ 2, so n has a prime divisor. Fix a prime q ∈ N+ such that q | n. Notice that q is odd
because m is odd. We then have that −1 is a quadratic residue modulo q, so by the previous corollary we
know that q ≡ 1 (mod 4). Now if q = pi, then q would divide

n− (2p1p2 · · · pk)2 = 1

a contradiction. Thus, we have established the existence of a prime q ≡ 1 (mod 4) such that q 6= pi for all
i. The result follows.

Proposition 6.1.11. Let p be an odd prime.

1. For any a, b ∈ Z, we have (
ab

p

)
=
(
a

p

)(
b

p

)
2. If a ≡ b (mod p), then (

a

p

)
=
(
b

p

)
3. For any a with p - a, we have (

a2

p

)
= 1

4. We always have (
1
p

)
= 1

Proof. Properties 2, 3, and 4 follow directly from the definition of the Legendre symbol. We now prove
property 1. Suppose that a, b ∈ Z. If either p | a or p | b, then both sides are 0. Suppose then that p - a and
p - b. We then have that (

ab

p

)
≡ (ab)(p−1)/2 (mod p)

≡ a(p−1)/2 · b(p−1)/2 (mod p)

≡
(
a

p

)(
b

p

)
(mod p)

Therefore, the two values are equivalent modulo p. Since they both equal ±1, and 1 6≡ −1 (mod p), they
must be equal.

The first statement in the above proposition is saying that the function φ : U(Z/pZ) → {1,−1} defined
by

φ(a) =
(
a

p

)
is a group homomorphism from U(Z/pZ) to {±1} (viewed as a group under multiplication). It says that
the product of two quadratic residues is a quadratic residue, that the product of a quadratic residue and
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a quadratic nonresidue is a quadratic nonresidue, and that the product of two quadratic nonresidues is a
residue. The first two of these are not very surprising and can be easily generalized to any field. That is, if F
is a field and we are working in the group U(F ) = F\{0}, then the product of two squares is alway a square,
and the product of a square and a nonsquare is always a nonsquare (prove it!). However, it is certainly not
true in general fields that the product of two nonsquares is a square, so this is something very special about
U(Z/pZ).

For example, consider the field Q and think about the squares in U(Q). Notice that neither 2 nor 3
are squares in U(Q), but their product 2 · 3 = 6 is also not a square in Q. In contrast, the product of two
nonsquares in U(R) must be a square because an element is a square exactly when it is positive.

Let’s analyze this situation more generally. Let F be a field and consider the function φ : U(F )→ {1,−1}
defined by

φ(a) =

{
1 if a is a square in U(F )
−1 if a is not a square in U(F )

As we saw above, it is not generally true that φ is a group homomorphism (since if F = Q, then h(6) = −1
while h(2) · h(3) = (−1) · (−1) = 1). Let A = {a ∈ U(F ) : φ(a) = 1} be the set of squares. It is still true
in general that H is a multiplicative subgroup of U(F ) (check it!), and thus it must be a normal subgroup
because U(F ) is abelian. Thus, there is a natural projection map

π : U(F )→ U(F )/H

In the case where F = Z/pZ, know that H = Qp has p−1
2 elements, so H has index 2 in U(F ) and hence the

group U(F )/H has two elements. Thus, in this case, the quotient group U(Z/pZ)/Qp has order 2 and can be
identified isomorphically with {±1} under multiplication. In this way, the map φ above given by a 7→ (ap ) is
the same map as π. Fundamentally, the fact that Qp has index 2 in U(Z/pZ) is the reason why the product
of two nonsquares must be a square (because any nonsquare gets mapped to −1 in this quotient, and hence
the product of two nonsquares corresponds to (−1) · (−1) = 1).

If you are working in a field F where the set of squares H has index greater than 2 in U(F ), you still get
this projection map π : U(F ) → U(F )/H that is a homomorphism, but since the quotient object has more
than 2 elements there is no reason why the product of two nonidentity elements in the quotient will be the
identity element, so there is no reason to believe that the product of two nonsquares will be a square.

6.2 When 2 is a Quadratic Residue Modulo p

Let p be an odd prime. We have Euler’s Criterion, which tells us that 2 is a quadratic residue modulo p if
and only if

2(p−1)/2 ≡ 1 (mod p)

For a large prime p, a computer can quickly determine this (by repeated squaring), but it is still a significant
computation. We want to determine a simple characterization for when 2 is a quadratic residue modulo p
that would allow us to immediately conclude the answer using hardly any work.

Although there are elementary ways to get at such a characterization, we give a slick proof using some
algebraic number theory that will pave the way for later results. The very clever idea is to work in a ring
extending the integers for which we can easily manipulate Euler’s Criterion. In the integers, the value of
2(p−1)/2 is difficult to compute precisely. So the first step is to thing of a ring that has elements where large
powers are easy to compute. We know that roots of unity cycle around when you take powers, so we would
like to work in a ring where we express 2 in terms of roots of unity. Of course, another problem is that the
power of a sum is not the sum of the powers. However, since we are working modulo a prime, this is easily
overcome.
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Lemma 6.2.1. Let R be a subring of C and let p ∈ N+ be prime. Working in R, we have

(α+ β)p ≡ αp + βp (mod p)

for all α, β ∈ R.

Proof. By the Binomial Theorem, we have

(α+ β)p = αp +
(
p

1

)
αp−1β +

(
p

2

)
αp−2β2 + · · ·+

(
p

p− 1

)
αβp−1 + βp

hence

(α+ β)p − (αp + βp) =
(
p

1

)
αp−1β +

(
p

2

)
αp−2β2 + · · ·+

(
p

p− 1

)
αβp−1

We know p |
(
p
k

)
in Z, and hence p |

(
p
k

)
in R, whenever 1 ≤ k ≤ p− 1. Thus, the right-hand side is divisible

by p in R, and therefore
(α+ β)p ≡ αp + βp (mod p)

in R.

Lemma 6.2.2. Let R be a subring of C consisting entirely of algebraic integers (for example, R ⊆ OK for
some number field K). Let m,n ∈ Z. If m | n in R, then m | n in Z.

Proof. Suppose that m | n in R. Fix α ∈ R with n = mα. Notice that if m = 0, then n = 0, so trivially
m | n in Z. Suppose then that m 6= 0. We then have that α = n

m ∈ Q. Since α ∈ R, we know that α is an
algebraic integer, so using Corollary 4.5.10 we can conclude that α ∈ Z. Therefore, m | n in Z.

Corollary 6.2.3. Let R be a subring of C consisting entirely of algebraic integers. Let a, b, c ∈ Z. We have
a ≡ b (mod c) in Z if and only if a ≡ b (mod c) in R.

Proof. Immediate from the previous lemma.

Now Euler’s Criterion deals with 2(p−1)/2 modulo p, so in order to use these results, we instead seek to
express

√
2 in terms of roots of unity because 2(p−1)/2 = (

√
2)p−1, which is much closer to a pth power. In

a perfect world, we would ideally want to be able to express
√

2 as sums and differences of roots of unity
without any coefficients so that raising to a power will be incredibly easy.

Thus, our goal is to express
√

2 in terms of roots of unity, and after playing around the ring that works
out is R = Z[ζ8] where

ζ8 = e2πi/8

= eπi/4

= cos
π

4
+ i · sin π

4

=
√

2
2

+ i ·
√

2
2

We have

ζ−1
8 = ζ7

8

= e14πi/8

= e7πi/4

= cos
7π
4

+ i · sin 7π
4

=
√

2
2
− i ·

√
2

2
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hence
ζ8 + ζ7

8 = ζ8 + ζ−1
8 =

√
2

Thus, we will work in the ring R = Z[ζ8].
Although not essential for our development, we first establish some facts about this ring. We know that

ζ8 is a root of the polynomial x8 − 1. We have

x8 − 1 = (x4 − 1)(x4 + 1)

Now ζ4
8 = eπi = −1, so ζ8 is not a root of x4 − 1. It follows that ζ8 is a root of x4 + 1, and we claim that

this is the minimal polynomial of ζ8 over Q. The polynomial x4 + 1 also has no rational roots (because
(±1)4 + 1 = 2), but we need to check that it is not the product of two degree 2 polynomials in Z[x]. Suppose
then that a, b, c, d ∈ Z with

x4 + 1 = (x2 + ax+ b)(x2 + cx+ d)

= x4 + (a+ c)x3 + (ac+ b+ d)x2 + (ad+ bc)x+ bd

Looking at constant terms, we then have bd = 1, so either b = 1 = d or b = −1 = d. This gives two cases.

• Case 1: Suppose that b = 1 = d. Looking at the coefficients of x3 and x2, we have a + c = 0 and
ac+ 2 = 0. Thus c = −a and this implies−a2 + 2 = 0. From this we conclude that a2 = 2 which is a
contradiction because a ∈ Z.

• Case 2: Suppose that b = −1 = d. Looking at the coefficients of x3 and x2, we have a + c = 0 and
ac− 2 = 0. Thus c = −a and this implies−a2 − 2 = 0. From this we conclude that a2 = −2 which is a
contradiction because a ∈ Z.

Therefore, x4 +1 is also not the product of two quadratics, and hence x4 +1 is irreducible in Q[x]. Therefore,
x4 + 1 is the minimal polynomial of ζ8 over Q. It follows that ζ8 is an algebraic integer and that

Q(ζ8) = {a0 + a1ζ8 + a2ζ
2
8 + a3ζ

3
8 : ai ∈ Q}

Intuitively, we can reduce powers of ζ8 beyond 3 by using the relation that ζ4
8 = −1. We also conclude that

Z[ζ8] = {a0 + a1ζ8 + a2ζ
2
8 + a3ζ

3
8 : ai ∈ Z}

Since ζ8 is an algebraic integer, we certainly have Z[ζ8] ⊆ OQ(ζ8). It is not clear at this point whether
equality holds (it does), but we do not need that here. We know that ζ7

8 ∈ Z[ζ8], and in terms of the above
representations notice that

ζ7
8 = ζ4

8 · ζ3
8 = (−1) · ζ3

8

Let τ = ζ8 + ζ−1
8 =

√
2 ∈ R. Working in R, we know that

2(p−1)/2 ≡
(

2
p

)
(mod p)

so as τ2 = 2, it follows that

τp−1 ≡
(

2
p

)
(mod p)

Multiplying both sides by τ we conclude that

τp ≡
(

2
p

)
· τ (mod p)
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Now

τp = (ζ8 + ζ−1
8 )p

≡ ζp8 + ζ−p8 (mod p)

We now have a few cases.

• If p ≡ 1 (mod 8), then

τp ≡ ζp8 + ζ−p8 (mod p)

≡ ζ8 + ζ−1
8 (mod p)

≡ τ (mod p)

• If p ≡ 3 (mod 8), then

τp ≡ ζp8 + ζ−p8 (mod p)

≡ ζ3
8 + ζ−3

8 (mod p)

≡ −ζ−1
8 − ζ8 (mod p)

≡ −τ (mod p)

• If p ≡ 5 (mod 8), then

τp ≡ ζp8 + ζ−p8 (mod p)

≡ ζ5
8 + ζ−5

8 (mod p)

≡ −ζ8 − ζ−1
8 (mod p)

≡ −τ (mod p)

• If p ≡ 7 (mod 8), then

τp ≡ ζp8 + ζ−p8 (mod p)

≡ ζ7
8 + ζ−7

8 (mod p)

≡ ζ−1
8 + ζ8 (mod p)

≡ τ (mod p)

Suppose then that either p ≡ 1 (mod 8) or p ≡ 7 (mod 8). We then have τp ≡ τ (mod p), so

τ ≡
(

2
p

)
· τ (mod p)

Multiplying both sides by τ and using the fact that τ2 = 2, we conclude that

2 ≡
(

2
p

)
2 (mod p)

So far we have been working in R, but from the above lemma this congruence holds in Z as well. Since
gcd(2, p) = 1, we may cancel the 2’s from both sides to conclude that

1 ≡
(

2
p

)
(mod p)
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and hence ( 2
p ) = 1.

Suppose instead that either p ≡ 3 (mod 8) or p ≡ 5 (mod 8). We then have τp ≡ −τ (mod p), so Thus

−τ ≡
(

2
p

)
· τ (mod p)

Multiplying both sides by τ and using the fact that τ2 = 2, we conclude that

−2 ≡
(

2
p

)
2 (mod p)

As above, this congruence holds in Z as well. Since gcd(2, p) = 1, we may cancel the 2’s from both sides to
conclude that

−1 ≡
(

2
p

)
(mod p)

and hence ( 2
p ) = −1.

Theorem 6.2.4. If p ∈ N+ is an odd prime, then(
2
p

)
=

{
1 if p ≡ 1, 7 (mod 8)
−1 if p ≡ 3, 5 (mod 8)

Stated more succinctly, we have (
2
p

)
= (−1)(p

2−1)/8

Proof. The only thing left to prove is the last step. If p ≡ 1, 7 (mod 8), then p2 ≡ 12, 72 (mod 16), so p2 ≡ 1
(mod 16) and hence p2−1

8 is even. If p ≡ 3, 5 (mod 8), then p2 ≡ 32, 52 (mod 16), so p2 ≡ 9 (mod 16) and
hence p2−1

8 is odd.

Corollary 6.2.5. If p ∈ N+ is an odd prime, then(
−2
p

)
=

{
1 if p ≡ 1, 3 (mod 8)
−1 if p ≡ 5, 7 (mod 8)

Proof. We know that (
−2
p

)
=
(
−1
p

)
·
(

2
p

)
We know that

(
−1
p

)
= 1 if and only if p ≡ 1 (mod 4), which is equivalent to saying that either p ≡ 1

(mod 8) or p ≡ 5 (mod 8). We know consider the four possible cases to obtain the result.

Corollary 6.2.6. Let p ∈ N+ be prime. There exists a, b ∈ Z with p = a2 + 2b2 in exactly the following
cases.

• p = 2

• p ≡ 1 (mod 8)

• p ≡ 3 (mod 8)

Proof. This follows from the homework using the fact that Z[
√
−2] is a UFD along with the previous

corollary.
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6.3 Quadratic Reciprocity

We now prove the following major theorem about quadratic residues.

Theorem 6.3.1 (Quadratic Reciprocity). Let p and q be distinct odd primes. We have(
p

q

)(
q

p

)
= (−1)

p−1
2 ·

q−1
2

In other words (
p

q

)
=


(
q
p

)
if either p ≡ 1 or q ≡ 1 (mod 4)

−
(
q
p

)
if both p ≡ 3 and q ≡ 3 (mod 4)

We build up to the proof in stages. Suppose that p ∈ N+. The key idea to the proof is to use the
important insights of the last section and try to find sums of roots of unity that equal

√
±p. For small values

of p, one can use some trigonometry to find ad hoc solutions. For example, we have

ζ3 − ζ2
3 =
√
−3

When n = 5, notice that

ζ5 = cos
2π
5

+ i sin
2π
5

and using some elementary trigonometry one can show that

cos
2π
5

=
√

5− 1
4

From here, some calculations give the following:

ζ5 − ζ2
5 − ζ3

5 + ζ4
5 =
√

5

Before jumping into the big theory, we first think about certain simple sums of roots of unity.

Lemma 6.3.2. Let p ∈ N+ be an odd prime. We have
p−1∑
k=0

ζkp = 0.

Proof. One proof is to use the sum of a finite geometric sequences. Since ζp 6= 1, we have

p−1∑
k=0

ζkp = 1 + ζp + ζ2
p + · · ·+ ζp−1

p

=
ζpp − 1
ζp − 1

=
1− 1
ζp − 1

= 0

Alternatively, notice that ζp is a root of

xp − 1 = (x− 1)(xp−1 + xp−2 + · · ·+ x+ 1)

so since ζp 6= 1, it follows that ζp is a root of

xp−1 + xp−2 + · · ·+ x+ 1

Plugging in ζp gives the result.
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We now extend the previous lemma to a “twisted” version where we use ζap in place of ζp.

Lemma 6.3.3. Let p ∈ N+ be an odd prime and let a ∈ Z.

• If p | a, then
p−1∑
k=0

ζakp = p.

• If p - a, then
p−1∑
k=0

ζakp = 0.

Proof. If p | a, then ζakp = (ζap )k = 1k for all k, so

p−1∑
k=0

ζakp =
p−1∑
k=0

1 = p

Suppose that p - a. We then have ζap 6= 1, so

p−1∑
k=0

ζakp =
p−1∑
k=0

(ζap )k

= 1 + ζap + (ζap )2 + · · ·+ (ζap )p−1

=
(ζap )p − 1
ζap − 1

=
1− 1
ζap − 1

= 0

Alternatively, notice that the function ψ : Z/pZ → Z/pZ defined by ψ(x) = a · x is a bijection (because
a ∈ U(Z/pZ) has an inverse). Thus, every element in the list 0, a, 2a, 3a, . . . , (p− 1)a is congruent modulo p
to exactly one element in the list 0, 1, 2, 3, . . . , p− 1 and we can use the previous lemma.

Definition 6.3.4. Let p ∈ N+ be an odd prime and let a ∈ Z. The quadratic Gauss sum (relative to a) is

Ga =
p−1∑
k=0

(
k

p

)
· ζakp

We let

G = G1 =
p−1∑
k=0

(
k

p

)
· ζkp

Lemma 6.3.5. Let p ∈ N+ be an odd prime. For any a ∈ Z, we have Ga = (ap ) ·G.

Proof. Suppose first that p | a. We then have ζakp = 1 for all k, so

Ga =
p−1∑
k=0

(
k

p

)
· ζakp

=
p−1∑
k=0

(
k

p

)
= 0
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where the last line follows from the fact that exactly half of the elements in {1, 2, . . . , p − 1} are quadratic
residues. The result follows from the fact that (ap ) = 0 whenever p | a by definition.

Suppose that p - a. Notice that the function ψ : Z/pZ → Z/pZ defined by ψ(x) = a · x is a bijection
(because a ∈ U(Z/pZ) has an inverse). Thus, the every element in the list 0, a, 2a, 3a, . . . , (p−1)a is congruent
modulo p to exactly one element in the list 0, 1, 2, 3, . . . , p− 1. It follows that

(
a

p

)
·Ga =

(
a

p

)
·
p−1∑
k=0

(
k

p

)
· ζakp

=
p−1∑
k=0

(
ak

p

)
· ζakp

=
p−1∑
k=0

(
k

p

)
· ζkp

= G

Now (ap ) = ±1, so multiplying both sides by (ap ) gives the result.

Theorem 6.3.6. Let p ∈ N+ be an odd prime. We have

G2 =

{
p if p ≡ 1 (mod 4)
−p if p ≡ 3 (mod 4)

Proof. We evaluate the sum
p−1∑
a=0

Ga ·G−a in two different ways. We have G0 ·G0 = 0 · 0 = 0 and if p - a then

Ga ·G−a =
(
a

p

)
·G ·

(
−a
p

)
·G

=
(
−1
p

)
·
(
a2

p

)
·G2

=
(
−1
p

)
·G2

It follows that

p−1∑
a=0

Ga ·G−a =
p−1∑
a=1

Ga ·G−a

=
p−1∑
a=1

(
−1
p

)
·G2

=
(
−1
p

)
· (p− 1) ·G2
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On the other hand, we have

p−1∑
a=0

Ga ·G−a =
p−1∑
a=0

((
p−1∑
k=0

(
k

p

)
· ζakp

)
·

(
p−1∑
`=0

(
`

p

)
· ζ−a`p

))

=
p−1∑
a=0

p−1∑
k=0

p−1∑
`=0

(
k

p

)(
`

p

)
· ζa(k−`)p

=
p−1∑
k=0

p−1∑
`=0

((
k

p

)(
`

p

)
·

(
p−1∑
a=0

ζa(k−`)p

))

=
p−1∑
k=0

(
k

p

)(
k

p

)
· p

=
p−1∑
k=1

p

= p(p− 1)

Therefore, we have (
−1
p

)
· (p− 1) ·G2 = p(p− 1)

from which we conclude that

G2 =
(
−1
p

)
· p

Using the fact that (−1
p ) = 1 when p ≡ 1 (mod 4) and (−1

p ) = −1 when p ≡ 3 (mod 4) completes the
proof.

Now that we have found a sum of roots of unity equal that squares to ±p, we are ready for the proof of
Quadratic Reciprocity.

Proof of Quadratic Reciprocity. Let p and q be distinct odd primes. Let G be the quadratic Gauss sum for
p, i.e.

G =
p−1∑
k=0

(
k

p

)
· ζkp

Let

p∗ =

{
p if p ≡ 1 (mod 4)
−p if p ≡ 3 (mod 4)

By Euler’s Criterion, we know that

(p∗)(q−1)/2 ≡
(
p∗

q

)
(mod q)

We now work in Z[ζp]. Using the fact that G2 = p∗ by the previous theorem, we conclude that

Gq−1 ≡
(
p∗

q

)
(mod q)

and hence

Gq ≡
(
p∗

q

)
·G (mod q)
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Now using the fact that q is an odd prime, we also have

Gq ≡

(
p−1∑
k=0

(
k

p

)
· ζkp

)q
(mod q)

≡
p−1∑
k=0

(
k

p

)q
· ζqkp (mod q)

≡
p−1∑
k=0

(
k

p

)
· ζqkp (mod q) (since q is odd)

≡ Gq (mod q)

≡
(
q

p

)
·G (mod q)

It follows that (
p∗

q

)
·G ≡

(
q

p

)
·G (mod q)

and multiplying both sides by G we conclude that

(
p∗

q

)
· p∗ ≡

(
q

p

)
· p∗ (mod q)

This congruence also hold in Z because every element of Z[ζp] is an algebraic integer. Using the fact that
gcd(p∗, q) = 1, we conclude that (

p∗

q

)
≡
(
q

p

)
(mod q)

Since q ≥ 3, it follows that (
p∗

q

)
=
(
q

p

)
If p ≡ 1 (mod 4), then p∗ = p and we are done. Suppose that p ≡ 3 (mod 4) so that p∗ = −p. We then have

(
p∗

q

)
=
(
−1
q

)
·
(
p

q

)

If q ≡ 1 (mod 4), then (−1
q ) = 1 and we are done. If q ≡ 3 (mod 4), then (−1

q ) = −1 and we are done.

Example 6.3.7. Compute (
−42
61

)
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Solution. We have(
−42
61

)
=
(
−1
61

)
·
(

2
61

)
·
(

3
61

)
·
(

7
61

)
= 1 ·

(
2
61

)
·
(

3
61

)
·
(

7
61

)
(since 61 ≡ 1 (mod 4))

= 1 · (−1) ·
(

3
61

)
·
(

7
61

)
(since 61 ≡ 5 (mod 8))

= 1 · (−1) ·
(

61
3

)
·
(

61
7

)
(since 61 ≡ 1 (mod 4))

= 1 · (−1) ·
(

1
3

)
·
(

5
7

)
= 1 · (−1) · 1 ·

(
5
7

)
= 1 · (−1) · 1 ·

(
7
5

)
(since 5 ≡ 1 (mod 4))

= 1 · (−1) · 1 ·
(

2
5

)
= 1 · (−1) · 1 · (−1) (since 5 ≡ 5 (mod 8))
= 1

Therefore −42 is a quadratic residue modulo 61.

Proposition 6.3.8. Let p be prime. We have 3 is a quadratic residue modulo p if and only if one of the
following is true.

• p = 2

• p ≡ 1 (mod 12)

• p ≡ 11 (mod 12)

Proof. First notice that 3 ≡ 1 (mod 2), so 3 is clearly a quadratic residue modulo 2. Also we have that 3 ≡ 0
(mod 3), so 3 is not a quadratic residue modulo 3. Suppose then that p > 3. By Quadratic Reciprocity and
the fact that 3 ≡ 3 (mod 4), we know that(

3
p

)
=

{(
p
3

)
if p ≡ 1 (mod 4)

−
(
p
3

)
if p ≡ 3 (mod 4)

We now have the following cases.

• Suppose that p ≡ 1 (mod 3) and p ≡ 1 (mod 4). We then have(
3
p

)
=
(p

3

)
=
(

1
3

)
= 1

• Suppose that p ≡ 1 (mod 3) and p ≡ 3 (mod 4). We then have(
3
p

)
= −

(p
3

)
= −

(
1
3

)
= 1
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• Suppose that p ≡ 2 (mod 3) and p ≡ 1 (mod 4). We then have(
3
p

)
=
(p

3

)
=
(

2
3

)
= −1

• Suppose that p ≡ 2 (mod 3) and p ≡ 3 (mod 4). We then have(
3
p

)
= −

(p
3

)
= −

(
2
3

)
= −(−1) = 1

Thus, 3 is a quadratic residue modulo p exactly in the first and fourth cases. Using the Chinese Remainder
Theorem, this is equivalent to either p ≡ 1 (mod 12) or p ≡ 11 (mod 12).



Chapter 7

Dedekind Domains and Factorizations
of Ideals

7.1 Ideals as Missing Elements

Let R be an integral domain, and consider the set H of all ideals of R. We obtain a function f : R→ H by
defining f(a) = 〈a〉, i.e. every element of R is sent to the ideal that it generates. Notice that given a, b ∈ R,
we have that f(a) = f(b) if and only if a and b are associates in R. Hence f fails to be injective whenever
U(R) ) {1} (which is almost always since −1 ∈ U(R) and 1 6= −1 if R has characteristic other than 2).
Also, notice that f is surjective exactly when R is a PID.

Applying f to an element of R results in a principal ideal that consists of the set of all multiples of a.
If we pass from elements to principal ideals in this way, we would like to still be able to multiply elements.
Fortunately, we worked out the basics about multiplication of ideals in Homework 1.

Definition 7.1.1. Let R be a commutative ring and let I and J be ideals of R. We define

IJ = {c1d1 + c2d2 + · · ·+ ckdk : k ∈ N+, ci ∈ I, di ∈ J}

In other words, IJ is the additive subgroup of R generated by the set {cd : c ∈ I, d ∈ J}.

Proposition 7.1.2. If I and J are ideals of a commutative ring R, then IJ is an ideal of R.

Proof. Notice that 0 ∈ IJ because 0 ∈ I, 0 ∈ J , and 0 · 0 = 0. Also, the set IJ is clearly closed under
addition because if we take two elements of IJ , say

a1b1 + a2b2 + · · ·+ a`b`

and
c1d1 + c2d2 + · · ·+ ckdk

where ai, ci ∈ I and bidi ∈ J , then

a1b1 + a2b2 + · · ·+ a`b` + c1d1 + c2d2 + · · ·+ ckdk

is of the correct form so is an element of IJ . Suppose then that we have an element c1d1+c2d2+· · ·+ckdk ∈ IJ
where ci ∈ I and di ∈ J and that r ∈ R. We have

r(c1d1 + c2d2 + · · ·+ ckdk) = r(c1d1) + r(c2d2) + · · ·+ r(ckdk)
= (rc1)d1 + (rc2)d2 + . . . (rck)dk

121
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Now since r ∈ R and each ci ∈ I, we know that each rci ∈ I because I is an ideal of R. Therefore, the last
expression above witnesses the fact that r(c1d1 + c2d2 + · · ·+ ckdk) ∈ IJ . Thus, the set IJ is closed under
multiplication by any element of R.

We also had the following result on Homework 1.

Proposition 7.1.3. Let R be a commutative ring and let I and J be ideals of R. Suppose that I = 〈a〉 and
J = 〈b〉. We then have IJ = 〈ab〉.

Proof. We first show that IJ ⊆ 〈ab〉. Consider an element c1d1 + c2d2 + · · · + ckdk ∈ IJ where ci ∈ I and
di ∈ J . Since each ci ∈ I = 〈a〉, we may fix ri ∈ R with ci = ria. Since each di ∈ J = 〈b〉, we may fix si ∈ R
with di = sib. We then have

c1d1 + c2d2 + · · ·+ ckdk = (r1a)(s1b) + (r2a)(s2b) + · · ·+ (rka)(skb)
= (r1s1)(ab) + (r2s2)(ab) + · · ·+ (rksk)(ab)
= (r1s1 + r2s2 + · · ·+ rksk)ab

Since r1s1 + r2s2 + · · ·+ rksk ∈ R, it follows that c1d1 + c2d2 + · · ·+ ckdk ∈ 〈ab〉. Therefore, IJ ⊆ 〈ab〉.
We now show that 〈ab〉 ⊆ IJ . Let x ∈ 〈ab〉 and fix r ∈ R with x = r(ab). We then have x = (ra)b and

since ra ∈ 〈a〉 = I and b ∈ 〈b〉 = J , it follows that x ∈ IJ . Therefore, 〈ab〉 ⊆ IJ .
Combining the above two facts, we conclude that IJ = 〈ab〉.

The previous proposition tells us the following. Suppose that a, b ∈ R. If we multiply in R and then form
f(ab), we obtain the same thing as first computing f(a) and f(b), and then multiplying the corresponding
ideals. In other words, f preserves multiplication (if would be a homomorphism except for the fact that R
under multiplication of elements, and H under multiplication of ideals, are not groups). We also know that
given p ∈ R, we have that p is a prime element of R if and only if 〈p〉 is a prime ideal of R, so our map also
preserve “primeness”. In other words, this transition from elements to ideals loses a bit of information by
identifying associates, but respects the important algebraic aspects of multiplication.

In fact, it turns out that this identification of associates, although a loss in information, is actually
helpful in stating results more elegantly. For example, consider R = Z. When thinking about factorizations
of elements, we considered the factorizations 6 = 2 · 3 and 6 = (−2) · (−3) as the “same” because we could
pair off elements up to associates. Thus, in this case, the presence of distinct associates made a fundamental
result less elegant. However, consider the fact that as ideals, these factorizations become

〈6〉 = 〈2〉 · 〈3〉 〈6〉 = 〈−2〉 · 〈−3〉

What has been gained? The answer is that although 2 6= −2 and 3 6= −3, we do have that 〈2〉 = 〈−2〉 and
〈3〉 = 〈−3〉. Thus, as ideals these factorization are in fact exactly the same. We do still have to cope with
order because 〈6〉 = 〈3〉 · 〈2〉, but this switch from elements to ideals results in a more elegant statement.

The above ideas are particularly elegant in a ring like R = Z[i] where there are more units besides ±1.
Recall that 2 is not irreducible in R and that

2 = (1 + i)(1− i) = (−i) · (1 + i)2

Notice that initially it is not obvious that the terms in first factorization are associates. To make the terms
equal and realize that a square is present, we needed to introduce the unit out front in the latter factorization.
Compare this to the situation using ideals where we simply have

〈2〉 = 〈1 + i〉 · 〈1− i〉 〈2〉 = 〈1 + i〉 · 〈1 + i〉

without having to explicitly introduce the unit (notice that 〈−i〉 = R because −i is a unit of R, and RI = I
for every ideal so we need not include it). Also we do in fact have 〈1 + i〉· = 〈1− i〉 as ideals, so each of these
factorization are actually identical.
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So far, we have be working in PIDs R where the function f : R → H is surjective. How should we
interpret the situation when R is not a PID and so there are elements of H that are not in range(f). Now
by passing from elements on R side to ideals on the H side we have introduced new objects. What do they
represent?

The key insight is the following. Let a ∈ R and consider the ideal I = 〈a〉. By definition, we have that I
is the set of multiples of a. In other words, principal ideals are exactly the set of multiples of some element.
If we abstract away and consider a set J of elements of R, what properties should it have if it is to be
considered the set of multiples of some element? Certainly we should have 0 ∈ J because 0 is a multiple of
everything. If you take two multiples of an element and add them, you should end up with another multiple
of the element, so J should be closed under addition (and similarly subtraction). Finally, if you take a
multiple of an element and multiply it by an arbitrary r ∈ R, then you should up with another multiple of
the element, so J should be closed under multiplication by any element of R. Looking at the properties we
just listed, we see that they are precisely the defining properties of an ideal!

The creative leap now is to view any ideal I, principal or not, as the set of multiples of some “element”.
The scare quotes are there because if I is a nonprincipal ideal, then I is not literally the set of multiples of
any element of R. But if we take that leap we can try to imagine that there is a magical “ideal” element
that is not really an element of R whose multiples in R are precisely the elements of I. Thus, the ideal is
the “shadow” of this nonexistent element inside of the ring R. When viewed this way, ideals serve the role
of completing R be including elements should be there may not actually exist.

This is all rather cute and a bit mind-bending, but the real question is whether taking this point of
view actually allows us to do something insightful and allow us to build an interesting theory. Consider the
number field K = Q(

√
−5) and its ring of integers R = OK = Z[

√
−5] (since −5 6≡ 1 (mod 4)). We know

from earlier that R is not a UFD because we have the two factorizations

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

where each of the four factors are irreducible in R and none are associates (since U(R) = {±1}). We also
showed that although 2 is an irreducible element of R, it is not a prime element because 2 | (1+

√
−5)(1−

√
−5)

but 2 - 1 +
√
−5 and 2 - 1−

√
−5. When we analyzed this situation in the past, we threw our hands in the

air. What more could we do? We can’t factor 2 any further so can not rectify the situation.
Since R is not a UFD, it is not a PID, and hence there are ideals that are not the set of multiples of an

element of R. In fact, on Homework 8, we show that P = 〈2, 1 +
√
−5〉 is a nonprincipal prime ideal of R.

Thus, P does not equal the set of multiples of any element of OK . However, try to think about P as the
set of multiples of some magical unicorn “ideal” element that just happens not to live in R. Since 2 ∈ I and
1 +
√
−5 are in P , each of these elements are multiples of this “ideal” prime element. Thus, we have found a

new “element” other than ±1 that is a common divisor of 2 and 1 +
√
−5. Perhaps we can use this element

to refine the above factorization.
Before getting into the calculations, we need a simple result about how to multiply nonprincipal but

finitely generated ideals. It extends the above the result about multiplication of principal ideals.

Proposition 7.1.4. Let R be a commutative ring and let I and J be ideals of R. Suppose that I =
〈a1, a2, . . . , ak〉 and J = 〈b1, b2, . . . , b`〉. We then have IJ = 〈{aibj : 1 ≤ i ≤ k, 1 ≤ j ≤ `}〉. In other words,
IJ is generated as an ideal by all products aibj.

Proof. The proof is essentially the same as the one for principal ideals, and the only difficulty is working
with the notation.

Let’s see this in practice, Working in R = OK = Z[
√
−5], we had the two different factorizations of 6:

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)
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As above, consider the nonprincipal prime ideal P = 〈2, 1 +
√
−5〉. Let’s examine what happens when we

multiply this ideal by itself to form P 2 = PP . By the above proposition, we know that

P 2 = 〈2, 1 +
√
−5〉 · 〈2, 1 +

√
−5〉

= 〈4, 2 + 2
√
−5, 2 + 2

√
−5,−4 + 2

√
−5〉

= 〈4, 2 + 2
√
−5,−4 + 2

√
−5〉

Now 2 divides each of these three generators in R, so 2 divides every elements of P 2 in R. It follows that
P 2 ⊆ 〈2〉. Now

6 = (2 + 2
√
−5)− (−4 + 2

√
−5) ∈ P 2

and hence 2 = 6 − 4 ∈ P 2. From this we conclude that 〈2〉 ⊆ P 2. Combining these two containments, it
follows that

P 2 = 〈2〉

Thus, although 2 is not prime but also does not factor nontrivially in R, the ideal 〈2〉 factors as the square
of an “ideal” element. One could also consider the ideal 〈2, 1−

√
−5〉 to think about a new common divisor

of these elements. However, a simple calculation shows that 〈2, 1−
√
−5〉 = 〈2, 1 +

√
−5〉 = P (use the fact

that 2 ·
√
−5 is in both ideals).

We can do the same thing with other pairs. Let

Q = 〈3, 1 +
√
−5〉 L = 〈3, 1−

√
−5〉

As in the case for P , one can check that Q are L are nonprincipal maximal ideals of R (they both have index
3 in R), and hence both are nonprincipal prime ideals of R. In contrast to the case with 2 in place of 3, one
can also check that Q 6= L. Now

QL = 〈3, 1 +
√
−5〉 · 〈3, 1−

√
−5〉

= 〈9, 3 + 3
√
−5, 3− 3

√
−5, 6〉

= 〈3〉

so we have succeeded in factoring 3 into prime ideal elements. One can also check that

PQ = 〈2, 1 +
√
−5〉 · 〈3, 1 +

√
−5〉

= 〈6, 2 + 2
√
−5, 3 + 3

√
−5,−4 + 2

√
−5〉

= 〈1 +
√
−5〉

and

PL = 〈2, 1−
√
−5〉 · 〈3, 1−

√
−5〉

= 〈6, 2− 2
√
−5, 3− 3

√
−5,−4− 2

√
−5〉

= 〈1−
√
−5〉

Let’s put this all together. Starting with the two bad factorizations

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

we obtain think in terms of ideals to see the factorizations

〈2〉 · 〈3〉 = 〈6〉 = 〈1 +
√
−5〉 · 〈1−

√
−5〉.
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Now we insert our new ideal factorizations to turn these into

P 2 ·QL = 〈6〉 = PQ · PL

Now ideal multiplication is commutative associative (see below), so these factorization as exactly the same
thing after rearranging! By passing from elements to ideals we have recovered uniqueness of factorization
into primes (where here we mean prime ideals rather than prime elements), at least in this one small case.
This is extremely exciting!

In hindsight, let’s compare the factorizations

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5)

in Z[
√
−5] with the factorizations

4 · 15 = 60 = 6 · 10

in Z. The latter does not violate unique factorization because it was not actually a factorization into primes.
We can break down 4 = 22, 15 = 3 · 5, 6 = 2 · 3, and 10 = 2 · 5 to see that

(2 · 2) · (3 · 5) = 60 = (2 · 3) · (2 · 5)

At first sight, the factorization stymied us because we could not break down the elements any further.
However, by passing to ideals we succeeded in writing

PP ·QL = 〈6〉 = PQ · PL

just as in Z.
The rest of this chapter is an elaboration of these ideas that will ultimately demonstrate that this is the

“correct” setting in which to work. However, we must travel a long road to get to our destination. We want
to replace elements by ideals, but immediately this raises several questions. Does multiplication of ideals
behave in a similar way to multiplication of elements? The following result is straightforward.

Proposition 7.1.5. Let R be an integral domain.

1. R · I = I for all ideals I of R.

2. I · J = J · I for all ideals I and J of R.

3. I · (J ·K) = (I · J) ·K for all ideals I, J,K or R.

Proof. The first is immediate from the observation that 1 ∈ R.
For the second, notice that I · J is the additive subgroup of R generated by the set {cd : c ∈ I, d ∈ J}

while J · I is the additive subgroup of R generated by the set {da : d ∈ J, c ∈ I}. These two sets are equal
because R is commutative, so I · J = J · I.

For the third, check that each side is the additive subgroup of R generated by the set {abc : a ∈ I, b ∈
J, c ∈ K}. The notation is horrible, but the argument is straightforward.

Therefore, multiplication of ideals is commutative and associative (just like multiplication of elements),
and R = 〈1〉 serves as a multiplicative identity. However, it takes much more work to extend other funda-
mental properties of element multiplication to ideal multiplication. For example, we would really hope that
the following are true:

• If I · J = I ·K and I 6= {0}, then J = K

• If I ⊆ J , then there exists K such that I = JK
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The latter arises from the idea that if I ⊆ J , then all multiples of the ideal element I are multiples of the
ideal element J , so that might suggest that J “divides” I. In other words, it is the abstract analogue of the
fact that if 〈a〉 ⊆ 〈b〉, then b | a. We will eventually prove these properties in certain nice rings, but they
are far from obvious. The following alternate characterization of prime ideals in terms of ideals is not too
difficult and will be extremely useful.

Proposition 7.1.6. Let R be integral domain. Let P be a proper ideal of R. The following are equivalent.

1. P is a prime ideal of R, i.e. whenever a, b ∈ R are such that ab ∈ P , either a ∈ P or b ∈ P .

2. Whenever I and J are ideals of R such that IJ ⊆ P , either I ⊆ P or J ⊆ P .

Proof. 1 → 2: Suppose that P is a prime ideal of R. Let I and J be ideal of R and assume that IJ ⊆ P .
Suppose that I 6⊆ P , and fix a ∈ I\P . We show that J ⊆ P . Let b ∈ J . We then have that ab ∈ IJ , so since
we are assuming that IJ ⊆ P , we know that ab ∈ P . Now P is prime ideal, so either a ∈ P or b ∈ P . Since
a was chosen to be an element of I\P , we must have b ∈ P . Since b ∈ J was chosen arbitrarily, we conclude
that J ⊆ P .

2→ 1: Suppose we know 2. Let a, b ∈ R and assume that ab ∈ P . Define I = 〈a〉 and J = 〈b〉. We know
from above that IJ = 〈ab〉. Since ab ∈ P and P is an ideal, it follows that IJ ⊆ P . Thus, by 2, either I ⊆ P
or J ⊆ P . If I ⊆ P , then a ∈ P , while if J ⊆ P , then b ∈ P .

The grand hope is that in “nice” rings, every ideal factors uniquely (up to order) as a product of prime
ideals. This is our ultimate goal for the rings we have been studying.

7.2 Dedekind Domains

As we have seen, it is not generally true that OK is always a PID. However, for any number field K, the
ring OK always has several pleasing ring theoretic properties. The wider class of rings that belong to are
called Dedekind domains.

Definition 7.2.1. A Dedekind domain is an integral domain R with the following three properties:

• R is Noetherian.

• Every nonzero prime ideal of R is a maximal ideal.

• R is integrally closed in its field of fractions. In other words, if we let F be the field of fractions of R,
then whenever α ∈ F is a root of a monic polynomial in R[x], we must have α ∈ R.

The above definition requires some time and experience to understand and appreciate. Before proving
that some of more exotic rings we have studied are Dedekind domains, we first prove that nice rings we have
studied have the above properties.

Theorem 7.2.2. Every PID is a Dedekind domain.

Proof. Let R be a PID. Corollary 3.3.6 tells us that every R is Noetherian (remember that Noetherian
is equivalent to the statement that every ideal is finitely generated). Corollary 3.2.13 tells us that every
nonzero prime ideal in R is a maximal ideal (recall that these ideals are precisely the ones generated by
irreducible/prime elements).

For the third property, we generalize the proofs of the Rational Root Theorem and Corollary 4.5.10 to
R. Let F be the field of fractions of R. Let α ∈ F be a root of a monic polynomial p(x) ∈ R[x]. Write

p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0
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where each ai ∈ R. Write α = b
c where b, c ∈ R with c 6= 0 and where b and c are relatively prime in R (this

is possible because R is a PID and hence greatest common divisor exist). We then have

(b/c)n + an−1 · (b/c)n−1 + · · ·+ a1 · (b/c) + a0 = 0

Multiplying through by cn we get

bn + an−1b
n−1c+ · · ·+ a1bc

n−1 + a0c
n = 0

From this, we see that
bn = c · [−(an−1b

n−1 + · · ·+ a1bc
n−2 + a0c

n−1)]

and hence c | bn in R. From this we conclude that any irreducible/prime divisor of c in R would be a divisor
of bn and hence a divisor of b. Since b and c are relatively prime in R, they have no common irreducible/prime
divisors in R, and hence c must not be divisible by any irreducible/prime in R. However, we know that
every nonzero nonunit element of R is divisible by an irreducible element, so the only possible conclusion is
that c is unit in R. Thus, α = b/c = bc−1 ∈ R. It follows that R is integrally closed in F .

Let K be a number field. We prove on the homework that the field of fractions of OK is K. Thus, we
must ask whether OK is integrally closed in K. Now by definition, OK is the set of algebraic integers of K,
which is the set of elements of K that are roots of monic polynomials in Z[x]. Since we have thrown in all
elements of K that roots of monic polynomials, it is natural to believe that OK is integrally closed in K.
However, the definition only dealt with polynomials having coefficients from Z. We now have to consider
monic polynomials having coefficients in OK that are not in Z[x]. Are roots of these polynomials necessarily
in OK as well? The question is similar to the following analytic idea. Suppose that you take the closure of a
set A to obtain a set B. Now what happens when you take the closure of B? It is natural to hope that the
new closure is B again, but this is not obvious because there are more points in B and hence the possibility
of new limit points.

For example, consider K = Q(ζ3). By definition of OK , every element of K that is a root of some monic
polynomial with integer coefficients lies in OK . However, consider the polynomial

p(x) = x3 + ζ3x
2 + (5− 2ζ3)x+ 7

If there is a root α of p(x) that lies in K, it is not at all obvious that this root is an algebraic integer (and
hence belongs to OK) because it is far from clear how to find a monic polynomial in Z[x] that has α as a
root.

Theorem 7.2.3. Let K be a number field. We then have have that OK is integrally closed in its field of
fractions K.

Proof. We know from the homework that K is the field of fractions of OK . Let p(x) ∈ OK [x] be a monic
polynomial. Write

p(x) = xn + βn−1x
n−1 + · · ·+ β1x+ β0

where each βi ∈ OK . Let α ∈ K be a root of p(x).
Since each βi ∈ OK , we know that each βi is an algebraic integer. Using Theorem 4.5.6 that Z[βi] is

finitely generated as an additive abelian group. In fact, letting mi be the degree of some monic polynomial
fi(x) inZ[x] having βi as a root, the ring Z[βi] is finitely generated as an additive abelian group by the set
{βki : 0 ≤ k < mi} (intuitively we can reduce powers of βi above mi to lower powers with integer coefficients
using the monic polynomial fi(x)). Using this, the ring Z[β0, β1, . . . , βn−1] is finitely generated as an additive
abelian group by the finite set

{
n−1∏
i=0

βkii : 0 ≤ i ≤ n− 1, 0 ≤ ki ≤ mi}
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because again we can reduce larger powers of βi above mi to lower powers using fi(x).
One can now show that the ring Z[β0, β1, . . . , βn−1, α] is finitely generated as an additive abelian group

because we can use that fact that

αn = −(βn−1α
n−1 + · · ·+ β1α+ β0)

to reduce large powers of α beyond n to smaller powers of α with coefficients from the βi. Thus, the ring
Z[β0, β1, . . . , βn−1, α] is generated as an additive abelian group by the finite set

{α` ·
n−1∏
i=0

βkii : 0 ≤ i ≤ n− 1, 0 ≤ ki ≤ mi, 0 ≤ ` < n}

Since α is an element of some subring of C that is finitely generated as an additive abelian group, we may
use Theorem 4.5.6 to conclude that α is an algebraic integer. Since α ∈ K, it follows by definition that
α ∈ OK . Therefore, OK is integrally closed in K.

Lemma 7.2.4. Let K be a quadratic number field. For any nonzero ideal I of OK , we have that N+∩I 6= ∅.

Proof. Let I be a nonzero ideal of OK . Fix α ∈ I with α 6= 0. Notice that N(α) = α · α ∈ I. We have that
N(α) ∈ Z and also that N(α) 6= 0 because α 6= 0 (and hence α 6= 0 as well). If N(α) > 0, we are done. If
not N(α) < 0, notice that −N(α) ∈∈ N+ ∩ I as well.

Theorem 7.2.5. Let K be a quadratic number field. For any nonzero ideal I of OK , the ring OK/I is
finite.

Proof. Fix a square-free d ∈ Z\{1} with K = Q(
√
d). Let I be a nonzero ideal of OK . By the previous

lemma, we may fix m ∈ N+ ∩ I and let J = 〈m〉. We then have that J ⊆ I, so to show that OK/I is finite it
suffices to show that OK/J is finite (because if α+ J = β + J , then α− β ∈ J ⊆ I, so α+ I = β + I). Let

η =

{√
d if d 6≡ 1 (mod 4)

1+
√
d

2 if d ≡ 1 (mod 4)

Thus, in either case, we have
OK = Z[η] = {a+ bη : a, b ∈ Z}

We claim that every element of OK/J is represented by an element of the form r1 + r2η with 0 ≤ ri < m.
To see this, let a, b ∈ Z be arbitrary. Since m ∈ N+, we may fix qi, ri ∈ Z with a = q1m+ r1, b = q2m+ r2
and 0 ≤ ri < m. We then have that

(a+ bη)− (r1 + r2η) = (a− r1) + (b− r2)η
= q1m+ q2mη

= m · (q1 + q2η)

Thus, (a + bη) − (r1 + r2η) ∈ J and hence (a + bη) + J = (r2 + r2η) + J . It follows that every element of
OK/J is represented by an element of the form r1 + r2η with 0 ≤ ri < m. Since there are finitely many such
elements, we conclude that OK/J is finite. As mentioned above, this implies that OK/I is finite.

Corollary 7.2.6. Let K be a quadratic number field. We then have that OK is Noetherian and that every
nonzero prime ideal of OK is maximal. Thus, OK is a Dedekind domain.
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Proof. We first show that OK is Noetherian. Below, we use the notation (G : H) to mean the index of the
subgroup H inside the group G (that is, the number of cosets of H in G). Suppose that

I1 ( I2 ( I3 ( . . .

is a strictly increasing sequence of ideals of OK . Notice that I2 6= {0}, so by the previous theorem we know
that OK/I2 is finite, i.e. that (OK : I2) is finite (where we are viewing each of these as additive groups).
Since I2 ( I3, we know that (I3 : I2) ≥ 2, so since

(OK : I2) = (OK : I3) · (I3 : I2)

it follows that (OK : I3) < (OK : I2). Following this argument, we see that (OK : Im+1) < (OK : Im) for all
m. However, this is a contradiction because there does not exist an infinite decreasing sequence of natural
numbers.

Suppose now that P is a nonzero prime ideal of OK . We then know that OK/P is an integral domain.
By the previous corollary, we also know that OK/P is finite. Since every finite integral domain is a field, we
conclude that OK/P is a field, and hence that P is a maximal ideal.

Combining both of these with the fact that OK is integrally closed in its field of fractions K (from above),
we conclude that OK is a Dedekind domain.

In fact, one can prove that OK is a Dedekind domain for every number field K (not just the quadratic
ones). To do this, it suffices to prove Lemma 7.2.4 and Theorem 7.2.5 for general number fields K because
that is all we used in the previous corollary. In order to prove Lemma 7.2.4, one can define a norm function
on OK that has similar properties, but this requires some more advanced field theory and Galois-theoretic
ideas. For Theorem 7.2.5, it suffices to show that OK is always a finitely generated abelian group. In fact,
one can show that OK always has an integral basis, i.e. a finite set α1, α2, . . . , αn that is linearly independent
over Q and such that

OK = {k1α1 + k2α2 + · · ·+ knαn : ki ∈ Z}

We were able to do this in the quadratic case by using our knowledge of the elements of OK to realize that
{1, η} was an integral basis. In general, this is significantly harder to prove in a general OK because it is
not always easy to get one’s hands on the elements. However, it is still true, but requires some more tools
that we currently have at our disposal.

7.3 Factorizations of Ideals in Dedekind Domains

Lemma 7.3.1. Let R be a Noetherian ring. Let H be a nonempty set of ideals of R. There exists a maximal
element of H, i.e. there exists I ∈ H such that there is no J ∈ H with I ( J .

Proof. Suppose that H does not have a maximal element. Let I1 ∈ H be arbitrary. Since I1 is not a maximal
element of H, we may fix I2 ∈ H with I1 ( I2. Continue to define a sequence of ideals recursively, i.e. given
In ∈ H, we know that In is not a maximal element of H, so we may fix In+1 ∈ H with In ( In+1. Thus, we
have a constructed a chain of ideals

I1 ( I2 ( I3 ( . . .

contradicting the fact that R is Noetherian.

In the context of Dedekind domains, the next corollary is the analogue of the statement that every
nonunit is divisible by some prime (where we are used ideal containment to represent divisibility). In the
integers, this is proved by a simple induction. Notice how the Noetherian condition replaces the role of
induction by forcing chains of ideals to end.
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Corollary 7.3.2. Let R be a Noetherian ring. Every proper ideal of R is contained in a maximal ideal of
R.

Proof. Let I be a proper ideal of R. Let H be the set of all proper ideals J of R such that I ⊆ J . Notice
that H 6= ∅ because I ∈ H. A maximal element of H exists by the previous lemma, and is a maximal ideal
of R containing I.

Now that we know that every nontrivial ideal is “divisible” by some prime ideal, our next hope is to
write every such ideal element as a product of prime ideals. As a small stepping stone to this, we first show
that every nonzero ideal contains a product of nonzero prime ideals. Intuitively, an ideal with few members
corresponds to a large “ideal element” (since the ideal is thought of as a set of multiples, and larger elements
have fewer multiples). Thus, this next proposition is saying that no ideal is so “large” when viewed as an
element (or equivalently has so few members) that it can not be subsumed by a product of primes. Again,
the key idea is to use the Noetherian property to take the place of an inductive proof.

Proposition 7.3.3. Let R be a Dedekind domain and let I be a nonzero ideal of R. There exist nonzero
prime ideals P1, P2, . . . , Pk of R (not necessarily distinct) with P1P2 · · ·Pk ⊆ I.

Proof. LetH be the set of all nonzero ideals I that do not contain a product of nonzero prime ideals. Suppose
that H 6= ∅. Let I be a maximal element of H. Notice that I is certainly not prime itself, so we may fix
a, b ∈ R with ab ∈ I but a /∈ I and b /∈ I. Consider the ideals I + 〈a〉 and I + 〈b〉. Each of these ideals
properly contain I, so by maximality, each of these ideals contains a product of nonzero primes. Fix nonzero
prime ideals Pi and Qj such that P1P2 · · ·Pk ⊆ I + 〈a〉 and Q1Q2 · · ·Q` ⊆ I + 〈b〉.

We claim that P1P2 · · ·PkQ1Q2 · · ·Q` ⊆ I. To see this, it suffices to show that cd ∈ I whenever c ∈
P1P2 · · ·Pk and d ∈ Q1Q2 · · ·Q` (because the product is the set of sums of these elements). Let c ∈
P1P2 · · ·Pk and let d ∈ Q1Q2 · · ·Q`. We then have c ∈ I + 〈a〉, so we may fix x ∈ I and r ∈ R with
c = x+ ra. We also have d ∈ I + 〈b〉, so we may fix y ∈ I and s ∈ R with d = y + sb. We then have

cd = (x+ ra)(y + sb) = xy + ray + sbx+ rsab

Now x, y ∈ I and ab ∈ I, so cd ∈ I. Thus, P1P2 · · ·PkQ1Q2 · · ·Q` ⊆ I. We have found a product of
nonzero ideals that is a subset of I, so we have arrived at a contradiction. Therefore, H = ∅, and the result
follows.

Proposition 7.3.4. Let R be a Dedekind domain and let I be a proper nonzero ideal of R. Let F be the
field of fractions of R. There exists γ ∈ F\R such that γI ⊆ R, i.e. such that γa ∈ R for all a ∈ I.

Proof. Since I 6= {0}, we may fix a nonzero d ∈ I. By the previous proposition, we know that 〈d〉 contains a
product of nonzero prime ideals, and so we may fix nonzero prime ideals P1, P2, . . . , Pk such that P1P2 · · ·Pk ⊆
〈d〉 where k is as small as possible. Since I is a proper ideal, we may fix a maximal ideal M containing I.
Maximal ideals are always prime, so M is a prime ideal. We have

P1P2 · · ·Pk ⊆ 〈d〉 ⊆ I ⊆M

so by Proposition 7.1.6, we must have Pi ⊆ M for some i. Relabeling if necessary, we may assume that
P1 ⊆ M . Now R is a Dedekind domain, so since P1 is a nonzero prime ideal, it must be maximal. Hence,
M = P1 and we have

P1P2 · · ·Pk ⊆ 〈d〉 ⊆ I ⊆ P1

Since k was chosen as small as possible, we know that P2 · · ·Pk 6⊆ 〈d〉, hence we may fix c ∈ P2 · · ·Pk
such that c /∈ 〈d〉. We then have that d - c in R, so c

d ∈ F\R. Now for any a ∈ I, we have a ∈ P1, so
ac ∈ P1P2 · · ·Pk ⊆ 〈d〉. and hence d | ac in R. Thus, c

d · a = ac
d ∈ R for all a ∈ I, and we may take

γ = c
d ∈ F\R.
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Lemma 7.3.5. Let R be an integral domain. Let I be an ideal of R and let d ∈ R. Assume that d | a for
all a ∈ I. Let

J =
1
d
· I = {r ∈ R : rd ∈ I}

We then have that J is an ideal of R and I ⊆ J .

Proof. We clearly have 0 ∈ J since 0 · d = 0 ∈ I. If a, b ∈ J , then ad ∈ I and bd ∈ I, hence (a + b)d =
ad+ bd ∈ I, and hence a+ b ∈ J . If a ∈ J and r ∈ R, then ad ∈ I, so (ra)d = r(ad) ∈ I and hence ra ∈ J .
Thus, J is an ideal of R.

Finally if a ∈ I, then ad = da ∈ I, and hence a ∈ J . Thus, I ⊆ J .

Lemma 7.3.6. Let R be a commutative ring and let I be an ideal of R. For any d ∈ R, we have 〈d〉 · I =
{da : a ∈ I}.

Proof. We clearly have {da : a ∈ I} ⊆ 〈d〉 · I. We show that reverse containment. Let x ∈ 〈d〉 · I. Fix
b1, b2, . . . , bn ∈ 〈d〉 and a1, a2, . . . , an ∈ I such that x = b1a1 + b2a2 + · · ·+ bnan. For each i, fix ri ∈ R with
bi = rid. We then have

x = b1a1 + b2a2 + · · ·+ bnan

= (r1d)a1 + (r2d)a2 + · · ·+ (rnd)an
= d · (r1a1 + r2a2 + . . . rnan)

Since r1a1 + r2a2 + . . . rnan ∈ I, it follows that x ∈ {da : a ∈ I}. Thus, 〈d〉 · I ⊆ {da : a ∈ I}.

Theorem 7.3.7. Let R be a Dedekind domain. For all ideals I of R, there exists a nonzero ideal J of R
such that IJ is principal. In fact, if I 6= {0} and d is an arbitrary nonzero element of I, then there exists a
nonzero ideal J of R such that IJ = 〈d〉.

Proof. If I = {0}, this is trivial by taking J = R = 〈1〉, so assume that I 6= {0}. Fix d ∈ I with d 6= 0.
Define

J = {r ∈ R : 〈r〉 · I ⊆ 〈d〉}
= {r ∈ R : d | ra for all a ∈ I}

Notice that J is an ideal of R (check this) and J 6= {0} because d ∈ J . We certainly have IJ ⊆ 〈d〉, and we
claim that IJ = 〈d〉. Since IJ ⊆ 〈d〉, we know that d | x for all x ∈ IJ , so using Lemma 7.3.5 we see that
the set

K =
1
d
· IJ = {r ∈ R : rd ∈ IJ}

is an ideal of R. If K = R, then 1 ∈ K, so d ∈ IJ and hence IJ = 〈d〉 which completes the proof.
Suppose then that K is a proper ideal of R. Let F be the field of fractions of R. By the above proposition,

we may fix γ ∈ F\R with γK ⊆ R. Notice that if c ∈ J , then cd ∈ IJ because d ∈ I, hence c ∈ K. Thus,
J ⊆ K. It follows that γJ ⊆ γK ⊆ R.

We now claim that γJ ⊆ J . Let c ∈ J . Since γJ ⊆ R, notice that γc ∈ R. We need to show that γc ∈ J ,
so we need to show that d | (γc) · a for all a ∈ I. Let a ∈ I. We have ca = ac ∈ IJ , so d | ac. It follows that
ac
d ∈ K, and hence γ · acd ∈ R. Thus, d | (γc) · a.

Since J is an ideal of R and R is Noetherian, we may fix b1, b2, . . . , bn such that J = 〈b1, b2, . . . , bn〉. Now
γJ ⊆ J , so for each i, we have γbi ∈ J and hence may fix ri,j ∈ R with

γbi = ri,1b1 + ri,2b2 + · · ·+ ri,nbn

Let M be the n × n matrix M = [ri,j ] viewed as a matrix over the field F , and let v be the n × 1 column
vector v = [bi]. The above equation simply says that αv = Mv, and notice that v 6= 0 because J 6= {0}.
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Thus, γ is an eigenvalue of M . Let f(x) = det(xI −M) be the characteristic polynomial of M . Notice that
f(x) is a monic polynomial (of degree n) and that f(x) ∈ R[x] because all entries in M are elements of R.
Since γ is an eigenvalue of A, we know that γ is a root of the characteristic polynomial f(x). Now R is
Dedekind domain, so R is integrally closed in F and hence we must have γ ∈ R. This is a contradiction,
and hence it is not possible that K is a proper ideal of R.

Corollary 7.3.8. Let R be a Dedekind domain. Let I, J,K be ideals of R. If IJ = IK and I 6= {0}, then
J = K.

Proof. Suppose that IJ = IK and I 6= {0}. Fix a nonzero ideal L such that LI is principal. Fix d ∈ R with
LI = 〈d〉 and notice that d 6= 0 because both I and L are nonzero ideals. Multiplying both sides of IJ = IK
by L and using the fact that ideal multiplication is associative, we see that 〈d〉 · J = 〈d〉 ·K.

We now claim that J = K. Suppose first that a ∈ J . We then have da ∈ 〈d〉 · J , so da ∈ 〈d〉 ·K. Thus,
we may fix b ∈ K with da = db. Since R is a an integral domain and d 6= 0, we may cancel to conclude that
a = b ∈ K. Thus, J ⊆ K. Similarly, we have K ⊆ J . Combining these, we conclude that J = K.

Corollary 7.3.9. Let R be a Dedekind domain. Let I and J be ideals of R. We have If I ⊆ J if and only
if there exists an ideal K such that I = JK

Proof. Suppose first that there exists an ideal K with I = JK. Since JK ⊆ J , we clearly have I ⊆ J .
Suppose conversely that I ⊆ J . First assume that J is principal and fix d ∈ R with J = 〈d〉. We then

have I ⊆ 〈d〉, so d | a for all a ∈ I. By Lemma 7.3.5, the set

K =
1
d
· I = {r ∈ R : rd ∈ I}

is an ideal of R. We then have that JK = 〈d〉 ·K = I (check this last equality).
Suppose then that I ⊆ J but J is nonprincipal. Fix a nonzero ideal L of R such that JL is principal.

We then have IL ⊆ JL, so as JL is principal, we may fix an ideal K with IL = JLK. Since L 6= {0}, we
may use the previous corollary to conclude that I = JK.

Theorem 7.3.10. Let R be a Dedekind domain.

• Every nonzero proper ideal of R can be written as a product of prime ideals.

• If P1, P2, . . . , Pk, Q1, Q2, . . . , Q` are nonzero primes ideals of R with P1P2 · · ·Pk = Q1Q2 · · ·Q`, then
k = ` and there exists σ ∈ Sk such that Pi = Qσ(i) for all i.

Therefore, every nonzero proper ideal of R factors uniquely as a product of prime ideals.

Proof. Let H be the collection of all nonzero proper ideals of R that can not be written as a product of
prime ideals. Suppose that H 6= ∅. Since R is Noetherian, we may fix a maximal element I of H. Now I
is a proper ideal of R, so since R is Noetherian we may fix a maximal ideal M of R with I ⊆ M . By the
previous corollary, we may fix an ideal K of R with I = MK. We then have that I ⊆ K. Also, if I = K,
then RI = I = MI, so R = M by cancellation, which is a contradiction. Thus, I ( K, so K /∈ H because I
is a maximal element of H. Therefore, K is a product of nonzero prime ideals, and since M is also a prime
ideal (because it is a maximal ideal), it follows that I = MK can be written as a product of prime ideals.
This is a contradiction, so we must have H = ∅.

Suppose that P1, P2, . . . , Pk and Q1, Q2, . . . , Q` are nonzero primes ideals of R with P1P2 · · ·Pk =
Q1Q2 · · ·Q`. Since P1P2 · · ·Pk ⊆ P1, we then have

Q1Q2 · · ·Q` ⊆ P1

Since P1 is prime, Lemma 7.1.6 implies that there exists j with Qj ⊆ P1. Now R is a Dedekind domain, so
Qj is a maximal ideal and hence P1 = Qj . We may now cancel this factor from both sides and repeat. At
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no stage can we have a nonempty product of prime ideals equal to R, so eventually we pair up all the Pi
with a Qj and leave nothing left over.

Theorem 7.3.11. If R is a Dedekind domain, then R is a PID if and only if R is a UFD.

Proof. We know that PIDs are always UFDs in general. Suppose then that R is a Dedekind domain that
is also a UFD. Since R is a UFD, we know that every nonzero nonunit element of R can be written as a
product of irreducibles, and we also know that every irreducible element of R is prime. Combining these, we
conclude that every nonzero nonunit element of R can be written as a product of prime elements.

Suppose now that I is an arbitrary ideal of R. We need to show that I is principal. If either I = {0} or
I = R, then R is trivially principal, so assume that I is a nonzero proper ideal of R. We know that we may
fix a nonzero ideal L of R such IL is principal. If L = R, then IL = I, and hence I is principal. Suppose
then that L is a nonzero proper ideal of R. Notice that IL is a nonzero proper ideal of R, so we may fix a
nonzero nonunit a ∈ R with IL = 〈a〉. From above, we may write a = p1p2 · · · pn where the pi are prime
elements of R. We then have

IL = 〈a〉 = 〈p1〉 · 〈p2〉 · · · 〈pn〉

Since R is a Dedekind domain, we may fix nonzero prime ideals Qi and Rj such that I = Q1Q2 · · ·Qk and
L = R1R2 · · ·R`. We then have

Q1Q2 · · ·QkR1R2 · · ·R` = 〈p1〉 · 〈p2〉 · · · 〈pn〉

Now each ideal 〈pi〉 is a prime ideal because it is generated by a prime element, so by unique factorization
of ideals into primes, we know that each Qi equals some 〈pj〉. Thus, I is a product of principal prime ideals,
and hence is principal.

7.4 The Class Group

Definition 7.4.1. Let R be an integral domain. Define a relation ∼ on the set of nonzero ideals of R by
saying that I ∼ J if there exist nonzero a, b ∈ R with 〈a〉 · I = 〈b〉 · J .

Thus, two ideals are equivalent if they can be made equal via multiplication by (nonzero) principal ideals.

Proposition 7.4.2. Let R be an integral domain. The above relation ∼ is an equivalence relation on the
set of nonzero ideals of R.

Proof. We clearly have 〈1〉 · I = 〈1〉 · I for any nonzero ideal I of R, so ∼ is symmetric. Also, ∼ is symmetric
immediately from the definition. Suppose that I and J are nonzero ideals of R with I ∼ J and J ∼ K. Fix
nonzero a, b, c, d ∈ R with 〈a〉 · I = 〈b〉 · J and 〈c〉 · J = 〈d〉 ·K. We then have

〈ca〉 · I = 〈c〉 · 〈a〉 · I
= 〈c〉 · 〈b〉 · J
= 〈b〉 · 〈c〉 · J
= 〈b〉 · 〈d〉 ·K
= 〈bd〉 · J

Notice that ca 6= 0 and bd 6= 0 because R is an integral domain, so I ∼ K. Therefore, ∼ is an equivalence
relation.

The following lemma says that if R is a subring of C (such as when R = OK for a number field K), then
I ∼ J exactly when I and J have the same “shape” when viewed as a subset of C.
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Lemma 7.4.3. Let R be a subring of C. Let I and J be nonzero ideals of R. We then have that I ∼ J if
and only if there exists a nonzero λ ∈ C with λ · I = J (where λ · I = {λc : c ∈ I}).

Proof. Suppose first that I ∼ J . Fix nonzero a, b ∈ R with 〈a〉 · I = 〈b〉 · J . We claim that a
b · I = J .

• We first show that a
b · I ⊆ J . Let c ∈ I. We have ac ∈ 〈a〉 · I, so we must have ac ∈ 〈b〉 · J . By Lemma

7.3.6, we may fix d ∈ J with ac = bd. We then have

a

b
· c =

ac

b
=
bd

b
= d

so a
b · c ∈ J .

• We now show that J ⊆ a
b · I. Let d ∈ J . We have bd ∈ 〈b〉 · J , so we must have bd ∈ 〈a〉 · I. By Lemma

7.3.6, we may fix c ∈ I with bd = ac. We then have

d =
bd

b
=
ac

b
=
a

b
· c

so d ∈ a
b · I.

Combining the two containments, we conclude that a
b · I = J . Thus, we may let λ = a

b ∈ C.
Suppose conversely that there exists a nonzero λ ∈ C with λ · I = J . Since I is a nonzero ideal of R, we

may fix b ∈ I with b 6= 0. We then have λb ∈ J , so we may fix a ∈ J with λb = a. Notice that a 6= 0 because
λ 6= 0 and b 6= 0. We claim that 〈a〉 · I = 〈b〉 · J .

• We first show 〈a〉 · I ⊆ 〈b〉 · J . Let x ∈ 〈a〉 · I. By Lemma 7.3.6, we may fix c ∈ I with x = ac. Since
λ · I = J , we have λc ∈ J . Now x = ac = λbc = b · (λc), so x ∈ 〈b〉 · J .

• We now show that 〈b〉 · J ⊆ 〈a〉 · I. Let y ∈ 〈b〉 · J . By Lemma 7.3.6, we may fix d ∈ J with y = bd.
Since J = λ · I, we may fix c ∈ I with d = λc. Now y = bd = b(λc) = (λb) · c = ac, so y ∈ 〈a〉 · I.

Combining the two containments, we conclude that 〈a〉 · I = 〈b〉 · J .

Proposition 7.4.4. Let R be an integral domain. For any nonzero ideal I of R, we have R ∼ I if and only
if I is a principal ideal. Thus R is the set of all principal ideals of R.

Proof. Suppose first that I is a nonzero principal ideal of R. Fix a ∈ I such that I = 〈a〉. We then have
that 〈a〉 ·R = 〈a〉 = I = 〈1〉 · I, so R ∼ I.

Suppose conversely that I is a nonzero ideal of R and that R ∼ I. Fix nonzero elements a, b ∈ R with
〈a〉 · R = 〈b〉 · I. We then have 〈a〉 = 〈b〉 · I. Thus a ∈ 〈b〉 · I, so using Lemma 7.3.6 we may fix c ∈ I with
a = bc. We claim that I = 〈c〉. Since c ∈ I, we clearly have 〈c〉 ⊆ I. Let x ∈ I. We then have bx ∈ 〈b〉 · I, so
bx ∈ 〈a〉. Fix r ∈ R with bx = ra. We then have bx = rbc, so since R is an integral domain and b 6= 0, we
must have x = rc Thus, x ∈ 〈c〉. It follows that I = 〈c〉 and hence I is a principal ideal of R.

By the previous proposition, every nonzero principal ideal of R has the same “shape” as R. In the case
where R = Z[i] is the Gaussian integers, we have that R is a PID and hence all nonzero ideals of R look
just like R except for scaling and rotation (as we saw in Section 3.6). However, the situation is much more
interesting when R is not a PID. Consider the case where R = OQ(

√
−5) = Z[

√
−5]. We still have that

all principal ideals of R have the sam shape as R, but we know that nonprincipal ideals of R exist. Let
I = 〈2, 1 +

√
−5〉 and recall from the homework that I is nonprincipal. Drawing the elements of R as a

subset of C gives a geometric demonstration of these differences. Consider the case where J = 〈3, 1 +
√
−5〉.

One can show that J is also a nonprincipal ideal (by the similar argument). Notice that

〈1 +
√
−5〉 · I = 〈1 +

√
−5〉 · 〈2, 1 +

√
−5〉

= 〈2 + 2
√
−5,−4 + 2

√
5〉
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and

〈2〉 · J = 〈2〉 · 〈3, 1 +
√
−5〉

= 〈6, 2 + 2
√
−5〉

Now
−4 + 2

√
5 = (2 + 2

√
−5)− 6 ∈ 〈6, 2 + 2

√
−5〉

and
6 = (2 + 2

√
−5)− (−4 + 2

√
5) ∈ 〈2 + 2

√
−5,−4 + 2

√
5〉

so
〈1 +

√
−5〉 · I = 〈2〉 · J

and hence I ∼ J . In fact, one can show that any two nonprincipal ideals of R = Z[
√
−5] are equivalent and

hence ∼ has exactly two equivalence classes in this case.

Proposition 7.4.5. Let R be an integral domain and let I1, I2, J1, J2 be nonzero ideals of R. If I1 ∼ I2 and
J1 ∼ J2, then I1J1 ∼ I2J2.

Proof. Since I1 ∼ I2, we may fix nonzero a1, a2 ∈ R with 〈a1〉 · I1 = 〈a2〉 · I2. Since J1 ∼ J2, we may fix
nonzero b1, b2 ∈ R with 〈b1〉 · J1 = 〈b2〉 · J2. We then have

〈a1b1〉 · I1J1 = 〈a1〉 · 〈b1〉 · I1 · J1

= 〈a1〉 · I1 · 〈b1〉 · J1

= 〈a2〉 · I2 · 〈b2〉 · J2

= 〈a2〉 · 〈b2〉 · I2 · J2

= 〈a2b2〉 · I2J2

Since a1b1 6= 0 and a2b2 6= 0 (because R is an integral domain), it follows that I1J1 ∼ I2J2.

Theorem 7.4.6. Let R be an Dedekind domain. Define a binary operation on the equivalence classes of ∼
by letting I · J = IJ . Under this operation, the set of equivalence classes of ideals of R becomes an abelian
group.

Proof. The previous proposition says that · is well-defined on the equivalence classes of ∼. Now associativity
and commutativity of · follow immediately from the associativity and commutativity of ideal multiplication.
Notice that for any nonzero ideal I of R, we have RI = I = IR (since 1 ∈ R), hence R · I = I = I · R.
Thus, R serves as an identity. Suppose that I is an arbitrary nonzero ideal of R. Since R is a Dedekind
domain, Theorem 7.3.7 implies that we may fix a nonzero ideal J of R such that IJ is principal. We then
have R ∼ IJ from above, so I · J = IJ = R (and hence J · I = R by commutativity). Therefore, every
element has an inverse.

Definition 7.4.7. Let R be a Dedekind domain. The above group is called the (ideal) class group of R.

Notice that a Dedekind domain R is a UFD if and only if R is a PID if and only if the class group of R is
trivial. Thus, one way to view the class group is that it provides a measure of how badly unique factorization
and nonprincipality of ideals can fail. As mentioned above, the class group of Z[

√
−5] is a cyclic group of

order 2. The following is a nontrivial theorem that is a fundamental result in algebraic number theory (and
is beyond our scope).

Theorem 7.4.8. If K be a number field, then the class group of OK is always a finite group.
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Chapter 8

Cyclotomic Extensions

8.1 Cyclotomic Polynomials

Definition 8.1.1. Let F be a field and let n ∈ N+. An nth root of unity in F is an element u ∈ F such
that un = 1. In other words, an nth root of unity is a root of the polynomial xn − 1 ∈ F [x]. Working in a
field F , we let Rn be the set of nth roots of unity.

Given any field F and any n ∈ N+, notice that F has at most n distinct nth roots of unity because the
polynomial xn − 1 ∈ F [x] has at most n distinct roots. However, in some fields there may be fewer. For
example, 1 is the only 3rd root of unity in R, and ±1 are the only fourth roots of unity in R.

Working in C, we know that ζn = e2πi/n is an nth root of unity. Furthermore, viewed as an element of
U(C), we have |ζn| = n (since ζnn = 1 but ζkn = e2πki/n 6= 1 whenever 0 < k < n). Thus, ζn generates a
subgroup of U(C) with order n. Every element of this subgroup is an nth root of unity, so C has at least
n distinct nth roots of unity (namely {1, ζn, ζ2

n, . . . , ζ
n−1
n }). Therefore, C has exactly n distinct nth roots of

unity from above.

Proposition 8.1.2. Let F be a field and let n ∈ N+. The set Rn is a cyclic subgroup of U(F ) with order
equal to a divisor of n.

Proof. Clearly 1 ∈ Rn. If u,w ∈ Rn, then un = 1 = wn, so (uw)n = unwn = 1 · 1 = 1. If u ∈ Rn, then
un = 1, so u 6= 0 and multiplying both sides by (u−1)n gives 1 = (u−1)n, so u−1 ∈ Rn.

We know that |Rn| ≤ n by the above comments, so Rn is a finite subgroup of U(F ). Therefore, Rn is
cyclic by Theorem 2.6.1. Fix a generator w of Rn. We then have wn = 1, so the order of w must be a divisor
of n. Hence, |Rn| = |w| is a divisor of n.

Definition 8.1.3. Let F be a field and let n ∈ N+. A primitive nth root of unity in F is an element u ∈ F
such that |u| = n when viewed as an element of U(F ). Working in a field F , we let Pn be the set of primitive
nth roots of unity.

Using the previous proposition, notice that a primitive nth root of unity exists in F exactly when |Rn| = n.
We have that C has a primitive nth root of unity for all n because |ζn| = n for all n. However, R does not
have a primitive 4th root of unity.

Suppose now that we are working in C and we have a fixed n ∈ N+. We know that primitive nth roots
of unity exist because ζn is one. Now the number of primitive nth roots of unity is the number of generators
of Rn. Since Rn is a cyclic group of order n, we know from Corollary 2.4.9 that Rn has exactly ϕ(n) many
generators, so |Pn| = ϕ(n). Moreover, we know from Proposition 2.4.8 that ζkn is a primitive nth root of
unity exactly when gcd(k, n) = 1.

137
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Consider now an arbitrary nth root of unity u in a field F . We know that un = 1, so when viewed as an
element of U(F ) we know that |u| is a divisor of n. Suppose that |u| = d for some d | n. Notice then that u
is primitive dth root of unity. Thus, every nth root of unity is a primitive dth root of unity for some d | n.

We want to understand the field extension Q ⊆ Q(ζn) or in general Q ⊆ Q(ζkn). In order to do this, we
first need to understand that minimal polynomial of ζkn. Thus, we need to look at how xn − 1 factors over
Q. We have the following.

• x2 − 1 = (x− 1)(x+ 1)

• x3 − 1 = (x− 1)(x2 + x+ 1)

• x4 − 1 = (x− 1)(x+ 1)(x2 + 1)

• x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)

• x6 − 1 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 − x+ 1)

• x7 − 1 = (x− 1)(x6 + x5 + x4 + x3 + x2 + 1)

• x8 − 1 = (x− 1)(x+ 1)(x2 + 1)(x4 + 1)

• x9 − 1 = (x− 1)(x2 + x+ 1)(x6 + x3 + 1)

It is straightforward to check that each of the above quadratics have no roots in Q and hence are irreducible
in Q[x]. It is harder to see that the other factors are irreducible in Q[x], but we will do this below. Looking
at the the polynomials that arise, notice that

x2 + x+ 1 = (x− ζ3)(x− ζ2
3 )

and
x2 − x+ 1 = (x− ζ6)(x− ζ5

6 )

Thus, we are seeing the primitive nth roots of unity appear as the roots of the various polynomials. We now
turn this on its head by defining polynomials that have the primitive nth roots of unity as the roots.

Definition 8.1.4. Let n ∈ N+. Working in C, let S = {k ∈ {1, 2, . . . , n} : gcd(k, n) = 1} and define

Φn(x) =
∏
u∈Pn

(x− u)

=
∏
k∈S

(x− ζkn)

As it stands, we only have Φn(x) ∈ C[x] or better Φn(x) ∈ Q(ζn)[x]. Also, since |Pn| = ϕ(n), we have
deg(Φn(x)) = ϕ(n).

Suppose that n ∈ N+. The roots of xn − 1 are all of the nth roots of unity. Now any nth root of unity is
a primitive dth root of unity for some unique d | n as described above. Therefore

xn − 1 =
∏
u∈Rn

(x− u)

=
∏
d|n

∏
u∈Pd

(x− u)

=
∏
d|n

Φd(x)
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As we saw above, it turns out that several of the polynomials Φn(x) for small values of n are in Z[x], which
is a bit surprising based only the definition. But we will see that this is no accident.

The above formula gives us a recursive method to calculate Φn(x). For example, to calculate Φ5(x), we
need only note that

x5 − 1 = Φ1(x)Φ5(x) = (x− 1)Φ5(x)

to conclude that

Φ5(x) =
x5 − 1
x− 1

= x4 + x3 + x2 + x+ 1

We can then use this to calculate Φ10(x). We know that

x10 − 1 = Φ1(x)Φ2(x)Φ5(x)Φ10(x)

so
x10 − 1 = (x− 1)(x+ 1)(x4 + x3 + x2 + x+ 1)Φ10(x)

It follows that

Φ10(x) =
x10 − 1

(x5 − 1)(x+ 1)
=
x5 + 1
x+ 1

= x4 − x3 + x2 − x+ 1

Notice that if p is prime, then

xp − 1 = Φ1(x)Φp(x) = (x− 1)(xp−1 + xp−2 + · · ·+ x+ 1)

so
Φp(x) = xp−1 + xp−2 + · · ·+ x+ 1

We can now use this to compute Φp2(x). We have

xp
2
− 1 = Φ1(x)Φp(x)Φp2(x) = (x− 1)(xp−1 + xp−2 + · · ·+ 1)Φp2(x)

Since the product of the first two is xp − 1, it follows that

Φp2(x) =
xp

2 − 1
xp − 1

= xp(p−1) + xp(p−2) + · · ·+ xp + 1

as we saw in the case of p2 = 9 above.

Lemma 8.1.5. Let F ⊆ K be a field extension. Let f(x), g(x) ∈ F [x] and suppose that g(x) 6= 0. If
h(x) ∈ K[x] satisfies f(x) = g(x)h(x), then in fact h(x) ∈ F [x].

Proof. Since F [x] is a Euclidean domain, we may fix q(x), r(x) ∈ F [x] with f(x) = g(x)q(x) + r(x) and
either r(x) = 0 or deg(r(x)) < deg(g(x)). This equation works in K[x] too. Since quotients and remainders
are unique in K[x], and we also have f(x) = g(x)h(x) + 0, we must have h(x) = q(x) ∈ K[x].

Proposition 8.1.6. Φn(x) ∈ Q[x] and is monic for all n ∈ N+.

Proof. The proof is by induction on n. It is trivial for n = 1. Suppose that the result is true for all k < n.
We then have

xn − 1 =
∏
d|n

Φd(x) = (
∏

d|n,d6=n

Φd(x)) · Φn(x)

By induction the factor on the left (which is nonzero) is in Q[x] and we clearly have xn− 1 ∈ Q[x]. Thus, by
the lemma, we have Φn(x) ∈ Q[x]. Also, induction tells us that the factor on the left is monic, so comparing
leading terms it follows that Φn(x) is monic.
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Lemma 8.1.7. Suppose that f(x) ∈ Z[x] and that g(x), h(x) ∈ Q[x] with f(x) = g(x)h(x). Suppose further
that both f(x) and g(x) are monic. We then have that g(x), h(x) ∈ Z[x] and that h(x) is monic.

Proof. By looking at leading terms, we conclude that h(x) is also monic. By Gauss’ Lemma, there exist
s, t ∈ Q such that s · g(x) ∈ Z[x], t · h(x) ∈ Z[x], and

f(x) = (s · g(x)) · (t · h(x))

Since g(x) and h(x) are monic, we must have s, t ∈ Z. Now f(x) is also monic, so looking at the leading
term on the right we conclude that st = 1, so s, t ∈ {±1}. It follows that g(x), h(x) ∈ Z[x].

Theorem 8.1.8. Φn(x) ∈ Z[x] for all n ∈ N+.

Proof. The proof is by induction on n. It is trivial for n = 1. Suppose that the result is true for all k < n.
As above, we have

xn − 1 =
∏
d|n

Φd(x) = (
∏

d|n,d6=n

Φd(x)) · Φn(x)

By induction the factor on the left is a monic polynomial in Z[x] and we clearly have that xn − 1 ∈ Z[x] is
monic. Therefore, using the lemma, we conclude that Φn(x) ∈ Z[x].

Definition 8.1.9. Let F be a field. We define a function D : F [x] → F [x], called the formal derivative, as
follows. Given f(x) ∈ F [x], say

f(x) =
n∑
k=0

akx
k

we define

D(f(x)) =
n∑
k=1

kakx
k−1 =

n−1∑
k=0

(k + 1)ak+1x
k

where we interpret k ∈ F as k = 1 + 1 + · · ·+ 1 (where there a total of k many 1’s in the sum).

It is painful but straightforward to check that D obeys the usual derivative rules (such as the sum and
product rules) for any field F [x].

Proposition 8.1.10. Let F be a field and let f(x) ∈ F [x] be a nonzero polynomial. If f(x) and Df(x) are
relatively prime in F [x], then ordq(x)(f(x)) ≤ 1 for all irreducible q(x) ∈ F [x].

Proof. We prove the contrapositive. Suppose that q(x) ∈ F [x] is irreducible and ordq(x)(f(x)) ≥ 2. Fix
g(x) ∈ F [x] with f(x) = q(x)2g(x). We then have

Df(x) = 2 · q(x) ·Dq(x) · g(x) + q(x)2 ·Dg(x)
= q(x) · [2 ·Dq(x) · g(x) + q(x) ·Dg(x)]

so q(x) is a nonunit common divisor of f(x) and Df(x).

Corollary 8.1.11. Let n ∈ N+ and let p ∈ N+ be prime with p - n. Working in Z/pZ[x], we have
ordq(x)(xn − 1) ≤ 1 for all irreducible q(x) ∈ Z/pZ[x].

Proof. Working in Z/pZ[x], we have D(xn−1) = n ·xn−1. Notice that n 6= 0 because p - n. Since Z/pZ[x] is
a Euclidean domain and x ∈ Z/pZ[x] is irreducible, the only irreducible factors of D(xn− 1) are the nonzero
constant multiples of x (i.e. the associates of x). Since x - xn − 1 in Z/pZ[x], it follows that xn − 1 and
D(xn − 1) have no common irreducible factors in Z/pZ[x], and hence are relatively prime in Z/pZ[x]. The
result now follows from the previous proposition.
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Theorem 8.1.12. Φn(x) is irreducible in Q[x] for all n ∈ N+.

Proof. Let g(x) ∈ Q[x] be a monic irreducible factor of Φn(x) (such a factor exists because Q[x] is a Euclidean
domain). Fix h(x) ∈ Q[x] with Φn(x) = g(x)h(x). By Lemma 8.1.7, we have g(x), h(x) ∈ Z[x] and also that
h(x) is monic. Fix an arbitrary root u ∈ C of g(x), and notice that u is a primitive nth root of unity because
it is a root of Φn(x). Since g(x) is irreducible in Q[x], it follows that g(x) is the minimal polynomial of u
over Q.

Suppose that p is a prime with p - n. We claim that up is also a root of g(x). First notice that up is
a primitive nth root of unity (since p - n and hence gcd(p, n) = 1). Thus, either g(up) = 0 or h(up) = 0.
Assume that latter, i.e. assume that h(up) = 0. We then have that u is a root of h(xp), and since g(x) is the
minimal polynomial of u, we conclude that g(x) | h(xp) in Q[x]. Fix q(x) ∈ Q[x] with

h(xp) = g(x)q(x)

Now h(xp) ∈ Z[x] and both h(xp) and g(x) are monic, so q(x) ∈ Z[x] and is monic by Lemma 8.1.7. Reducing
this equation modulo p, we see that

h(xp) = g(x)q(x)

in Z/pZ[x]. Now the ring Z/pZ[x] has characteristic p and in Z/pZ we have ap = a for all a ∈ Z/pZ by
Fermat’s Little Theorem. Therefore, h(xp) = (h(x))p by the Freshman’s Dream Lemma. Hence in Z/pZ[x]
we have

(h(x))p = g(x)q(x)

Therefore, g(x) | (h(x))p in Z/pZ[x], and hence g(x) and h(x) have a common irreducible factor in Z/pZ[x]
(since Z/pZ[x] is a UFD). Now Φn(x) = g(x)h(x), hence Φn(x) = g(x)h(x) in Z/pZ[x], so it follows that
Φn(x) there exists an irreducible m(x) ∈ Z/pZ[x] such that m(x)2 | Φn(x) in Z/pZ[x]. Since Φn(x) | xn−1 in
Z/pZ[x], it follows that there exists an irreducible m(x) ∈ Z/pZ[x] such that m(x)2 | xn−1. This contradicts
the previous corollary. Therefore, we can not have h(up) = 0, so we must have g(up) = 0.

Thus, for any root u of g(x), and any prime p - n, we have that up is also a root of g(x). Now an arbitrary
primitive nth root of unity equals ζp1p2...pkn for primes pi - n. Repeatedly applying the result, we conclude
that that every primitive nth root of unity is a root of g(x). Since g(x) | Φn(x) in Q[x] and g(x) is monic,
this implies that Φn(x) = g(x). Therefore, Φn(x) is irreducible in Q[x].

Corollary 8.1.13. If u ∈ C be a primitive nth root of unity, then [Q(u) : Q] = ϕ(n). Thus, [Q(ζn) : Q] =
ϕ(n).

Lemma 8.1.14. Let n, k ∈ N+. Suppose that p ∈ N+ is prime divisor of Φn(k). We then have

• p - k.

• Either p | n or p ≡ 1 (mod n).

Proof. Let p ∈ N+ be a prime divisor of Φn(k). Now in Z[x], we have

Φn(x) | xn − 1

so we can conclude that Φn(k) | kn − 1 in Z. Since p | Φn(k), it follows that p | (kn − 1) in Z, hence kn ≡ 1
(mod p). From this we can conclude that p - k, which gives the first assertion.

Since p - k, we have k ∈ U(Z/pZ). Let m be the order of k viewed in the group U(Z/pZ). Working in
the group U(Z/pZ), we have k

n
= 1, so m | n. We now have two cases.

• Suppose that m = n, i.e. the order of k in U(Z/pZ) is n. By Lagrange’s Theorem, we conclude that
n | (p− 1), so p ≡ 1 (mod n).
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• Suppose that m 6= n, so m is proper divisor of n. We then have that k
m

= 1. Working in Z[x], there
exists g(x) ∈ Z[x] with

xn − 1 = Φn(x) · (xm − 1) · g(x)

(Here g(x) is the product of all Φd(x) where d varies over all proper divisors of n that are not divisors
of m; note that this might be an empty product in which case g(x) = 1). Reducing modulo p this gives

xn − 1 = Φn(x) · (xm − 1) · g(x)

Now k is a root of xm − 1 ∈ Z/pZ[x] and also a root of Φn(x) ∈ Z/pZ[x] (because p | Φn(k)). This
would imply that (x− k)2 divides xn− 1 in Z/pZ[x]. From the above corollary, this implies that p | n.

This completes the proof.

Lemma 8.1.15. Let n ∈ N with n ≥ 2. We have |Φn(x)| > x− 1 for all x ∈ R with x ≥ 2.

Proof. For any primitive nth root of unity u ∈ C, we have |x− u| > x− 1. Therefore

|Φn(x)| =
∏
u∈Pn

|x− u|

>
∏
u∈Pn

(x− 1)

= (x− 1)ϕ(n)

≥ x− 1

where the last line follows from the fact that x− 1 ≥ 1 and ϕ(n) ≥ 1.

Theorem 8.1.16 (Dirichlet’s Theorem on Primes in Arithmetic Progressions (Special Case)). For every
n ∈ N+, there exist infinitely many primes p ∈ N+ such that p ≡n 1.

Proof. Let n ∈ N+. Fix an arbitrary m ∈ N with m ≥ 2. We show that there is a prime p > m with p ≡ 1
(mod n). Notice that mn ≥ 2, so by the previous lemma we know that |Φmn(mn)| ≥ 2. Fix a prime p ∈ N+

such that p | Φmn(mn). By the first part of the above lemma, we know that p - mn. From this we conclude
that p - n, so using the second part of the above lemma, we conclude that p ≡ 1 (mod mn). This implies
both p ≡ 1 (mod n) and also p > mn ≥ m.


