Homework 6: Due Friday, October 11

Problem 1: For each of the following subgroups H of the given group G, determine if H is a normal subgroup of G.

- a. $G = S_4$ and $H = \langle (1\ 2\ 3\ 4) \rangle = \{id, (1\ 2\ 3\ 4), (1\ 3)(2\ 4), (1\ 4\ 3\ 2)\}.$
- b. $G = D_4$ and $H = \langle rs \rangle = \{id, rs\}.$
- c. $G = A_4$ and $H = \{id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$. (First check that H is indeed a subgroup of G). Suggestion: Normal subgroups have many equivalent characterizations. In each part, pick one of these which will make your life easy.

Problem 2: Suppose that H and K are both normal subgroups of G. Show that $H \cap K$ is a normal subgroup of G.

Problem 3: Consider the group $(\mathbb{Q}, +)$. Notice that \mathbb{Z} is a subgroup of \mathbb{Q} , and in fact it is a normal subgroup of \mathbb{Q} because \mathbb{Q} is abelian. Thus, we can form the quotient \mathbb{Q}/\mathbb{Z} . In class, we mentioned that for every $q \in \mathbb{Q}$, there exists $r \in \mathbb{Q}$ with $0 \le r < 1$ such that $q + \mathbb{Z} = r + \mathbb{Z}$. For example, we have $\frac{5}{2} + \mathbb{Z} = \frac{1}{2} + \mathbb{Z}$ and $-\frac{1}{7} + \mathbb{Z} = \frac{6}{7} + \mathbb{Z}$. In other words, we have

$$\mathbb{Q}/\mathbb{Z} = \{r + \mathbb{Z} : r \in \mathbb{Q} \cap [0, 1)\}.$$

- a. Show that if $r_1, r_2 \in \mathbb{Q}$ with $0 \le r_1 < r_2 < 1$ then $r_1 + \mathbb{Z} \ne r_2 + \mathbb{Z}$.
- b. Show that every element of \mathbb{Q}/\mathbb{Z} has finite order.

Note: Thus, \mathbb{Q}/\mathbb{Z} is an infinite abelian group in which every element has finite order.

Problem 4:

- a. Suppose that G is a group with $|G| \neq 1$ and |G| not prime (so either |G| is composite and greater than
- 1, or $|G| = \infty$). Show that there exists a subgroup H of G with $H \neq \{e\}$ and $H \neq G$.
- b. Suppose that G is an abelian group. Show that G is simple if and only if |G| is prime.