Problem Set 8

Problem 1: How many zeros does 10000! end with?

Problem 2: Let R be the region consisting of the points (x,y) of the cartesian plane satisfying both $|x|-|y| \le 1$ and $|y| \le 1$. Sketch the region R and find its area.

Problem 3: Let $n \in \mathbb{Z}$. Show that $gcd(n^2 + 1, (n+1)^2 + 1)$ is either 1 or 5.

*Problem 4: Find all positive integers n such that $n = d(n)^2$, where d(n) equals the number of positive divisors of n (for example, d(9) = 3).

*Problem 5: Prove that the expression

$$\frac{\gcd(m,n)}{n} \binom{n}{m}$$

is an integer whenever $n \ge m \ge 1$.

***Problem 6:** Given $n \in \mathbb{N}^+$, let $[n] = \{1, 2, 3, ..., n\}$.

a. For which values of n is it possible to express [n] as the union of two non-empty disjoint subsets so that the elements in the two subsets have equal sum?

b. For which values of n is it possible to express [n] as the union of three non-empty disjoint subsets so that the elements in the three subsets have equal sum?

*Problem 7: Let d be a real number. For each integer $m \ge 0$, define a sequence $\{a_m(j)\}$ by the condition

$$a_m(0) = \frac{d}{2^m}$$
 $a_m(j+1) = (a_m(j))^2 + 2a_m(j)$

Evaluate $\lim_{n\to\infty} a_n(n)$.