Problem Set 5

Problem 1: What is the greatest common divisor of the numbers in the set $\{16^n + 10n - 1 : n \in \mathbb{N}^+\}$?

Problem 2: Let A and B be different $n \times n$ matrices with real entries. If $A^3 = B^3$ and $A^2B = B^2A$, can $A^2 + B^2$ be invertible?

Problem 3: Two players play the following game. On their turn, each player selects an integer from 1 to 11 inclusive. The game stops when the sum of all the numbers played is at least 56, in which case the last player who selected a number is the winner. Determine a winning strategy for one of the players.

*Problem 4: Show that

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

is never an integer when n > 1.

*Problem 5: Evaluate

$$\int_0^a \int_0^b e^{\max\{b^2x^2, a^2y^2\}} dy dx$$

where a and b are positive.

*Problem 6: For each integer $n \ge 0$, let $S(n) = n - m^2$ where m is the greatest integer with $m^2 \le n$. Define a sequence $(a_k)_{k=0}^{\infty}$ by $a_0 = A$ and $a_{k+1} = a_k + S(a_k)$ for $k \ge 0$. For what positive integers A is this sequence eventually constant?

*Problem 7: Determine all polynomials P(x) with real coefficients such that $P(x^2 + 1) = (P(x))^2 + 1$ and P(0) = 0.