Problem Set 2

- **Problem 1:** A lattice point in the plane is a point (x,y) such that both x and y are integers. Find the smallest number n such that given n lattice points in the plane, there always exist two whose midpoint is also a lattice point.
- **Problem 2:** Suppose that $f:[a,b]\to\mathbb{R}$ is a continuous function. Suppose also that f takes on no value more than twice. Show that f must take on some value exactly once.

Problem 3:

- a. Suppose that $q \in \mathbb{Q}$ is positive and satisfies $q + \frac{1}{q} \in \mathbb{Z}$. Show that q = 1. b. Does there exist a positive $x \in \mathbb{R}$ with $x \neq 1$ such that $x + \frac{1}{x} \in \mathbb{Z}$? Explain.
- *Problem 4: Find, with explanation, the maximum value of $f(x) = x^3 3x$ on the set of all real numbers x satisfying $x^4 + 36 \le 13x^2$.
- *Problem 5: Find the last digit of $2^{(4^5)}$, i.e. of 2^{3^4} . Be careful because exponentiation is not associative (for example, $2^{3^2} = 2^9 = 512$ while $(2^3)^2 = 8^2 = 64$).
- *Problem 6: Show that if f(x) is a nonconstant polynomial with integer coefficients, then there are infinitely many m such that f(m) is not prime.
- *Problem 7: Let n be a natural number. Find the sum of the digits over all numbers occurring in the list $1, 2, 3, \ldots, 10^n - 1.$