Problem Set 13

Problem 1: Show that there is only one $a \in \mathbb{R}$ for which there exists a function $f: \mathbb{R} \to \mathbb{R}$ satisfying f(x-y) = f(x) - f(y) + axy whenever $x, y \in \mathbb{R}$.

Problem 2: Let $n \in \mathbb{N}^+$. How many sequences (a_1, a_2, \dots, a_k) with $1 \leq a_i \leq n$ are there such that $n \mid (a_1 + a_2 + \dots + a_k)$?

*Problem 3: A collection S of subsets of $\{1, 2, ..., n\}$ has the property that each pair of subsets has at least one element in common. Prove that there are at most 2^{n-1} many subsets in S.

*Problem 4: Evaluate

$$\int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)} + \sqrt{\ln(x+3)}} \ dx$$

*Problem 5: Let P(x) be a polynomial of degree n such that $P(k) = \frac{1}{k}$ for $k \in \{1, 2, ..., n+1\}$. Determine P(n+2).

*Problem 6: Let a_1, a_2, \ldots, a_{99} be a permutation of the numbers $1, 2, \ldots, 99$. Show that there exists m < n with $|a_m - m| = |a_n - n|$.

*Problem 7: Let S be a set of n distinct real numbers. Let A_S be the set of numbers that occur as averages of two distinct elements of S. For a given $n \geq 2$, what is the smallest possible number of elements in A_S ?