Problem Set 12

Problem 1: Determine all triples $(x, y, z) \in \mathbb{Z}^3$ for which $x^3 + y^3 + z^3 = (x + y + z)^3$.

Problem 2: Form a directed graph as follows. Let the vertex set be the set of positive rational numbers \mathbb{Q}^+ . For the directed edge set, each given $q \in \mathbb{Q}$ has two edges coming out it: One points to q+1 and one points to $\frac{q}{q+1}$. In other words, we have

$$V = \mathbb{Q}^+$$
 $E = \{(a, b) \in V^2 : \text{Either } b = a + 1 \text{ or } b = \frac{a}{a + 1}\}$

Show that for any $q \in V$, there is a unique directed path from 1 to q.

Problem 3: For which nonnegative integers n and k is

$$(k+1)^n + (k+2)^n + (k+3)^n + (k+4)^n + (k+5)^n$$

divisible by 5?

*Problem 4: Let $n \in \mathbb{N}^+$ and let B_n be the set of all binary sequences of length n. Define addition on two elements of B_n to be component-wise where you let 1+1=0. In group theory terms, we are thinking of B_n as the additive group $(\mathbb{Z}/2\mathbb{Z})^n$. Suppose that $f: B_n \to B_n$ is a function with the following two properties:

- $f(\mathbf{0}) = \mathbf{0}$ where $\mathbf{0}$ is the sequence of all 0's.
- Whenever $a, b \in B_n$ differ in exactly k coordinates, we have that f(a) and f(b) differ in exactly k coordinates.

Show that if $a, b, c \in B_n$ with $a + b + c = \mathbf{0}$, then $f(a) + f(b) + f(c) = \mathbf{0}$.

*Problem 5: Define polynomials $f_n(x)$ for $n \ge 0$ by $f_0(x) = 1$, $f_n(0) = 0$ for $n \ge 1$, and

$$\frac{d}{dx}(f_{n+1}(x)) = (n+1)f_n(x+1)$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

*Problem 6: Determine the units (i.e. rightmost) digit of

$$\left| \frac{10^{20,000}}{10^{100} + 3} \right|$$

*Problem 7: Can a countably infinite set have an uncountable collection of nonempty subsets such that the intersection of any two of them is finite?