Homework 9: Due Monday, March 10 **Problem 1:** Let $m, n \in \mathbb{N}^+$ with $m \leq n$. If σ is a permutation of [n], then we say that $i \in [n]$ is a fixed point of σ if $\sigma(i) = i$. How many permutations of [n] have exactly m fixed points? **Problem 2:** On Homework 7, you showed that $$S(n, n-2) = \binom{n}{3} + 3 \cdot \binom{n}{4}$$ for all $n \geq 3$. Now show that $$c(n, n-2) = 2 \cdot \binom{n}{3} + 3 \cdot \binom{n}{4}$$ for all $n \geq 3$. **Problem 3:** Let $n \in \mathbb{N}^+$. a. How many ways are there to break up 3n (distinct) people into n groups of size 3, where there is no ordering amongst the groups (so all that matters is the people who are grouped together)? b. How many permutations of [3n] consist of n disjoint 3-cycles? Note: Simplify your answers as much as possible. **Interlude:** Given $n \in \mathbb{N}^+$, define $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$. The rational numbers H_n are called *harmonic numbers*. It can be shown that as n gets large, then H_n gets arbitrary large and in fact H_n is reasonably close to $\ln n$ (roughly, H_n can viewed as a certain Riemann sum approximating $\int_1^n \frac{1}{x} dx$, which is where the $\ln n$ comes from). More precisely, it can be shown that $$\lim_{n\to\infty} (H_n - \ln n)$$ exists and equals a number $\gamma \approx .5772156649...$ called the Euler-Mascheroni constant (remarkably, it is still not known whether γ is irrational). Thus, when n is large, an extremely good approximation to H_n is $$H_n \approx \ln n + \gamma$$ **Problem 4:** Let $n \in \mathbb{N}^+$. a. Suppose that $k \in \mathbb{N}^+$ with $n+1 \le k \le 2n$. Show that the number of permutations of [2n] containing a k-cycle is $\frac{(2n)!}{k}$. b. Use part a and the above discussion to show that when n is large, the fraction of permutations of [2n] containing a cycle of length at least n + 1 is approximately $\ln 2$. **Problem 5:** Suppose that σ is a permutation of [n]. Define an $n \times n$ matrix $M(\sigma)$ by letting $$M(\sigma)_{i,j} = \begin{cases} 1 & \text{if } \sigma(j) = i \\ 0 & \text{otherwise} \end{cases}$$ a. Let n=4, let $\sigma=(1\ 2\ 3)(4)$ and let $\tau=(1\ 2)(3\ 4)$. Write down $M(\sigma)$, $M(\tau)$, and $M(\sigma\circ\tau)$. b. Show that $M(\sigma \circ \tau) = M(\sigma) \cdot M(\tau)$ for all permutations σ and τ of [n] (not just those in part a).