Homework 13: Due Friday, April 18

Problem 1: Let T be the unique tree with vertex set [8] whose Prüfer code is 4, 1, 1, 4, 3, 1. Find the corresponding sequence a_1, a_2, \ldots, a_7 and then draw T.

Problem 2: Count the number of trees with vertex set [11] where all of the following hold:

- d(5) = 4
- d(1) = d(7) = 3
- d(4) = d(8) = 2
- d(v) = 1 for all other vertices, i.e. all other vertices are leaves.

Problem 3: Using Stirling numbers, count the number of trees with vertex set [20] having exactly 6 leaves.

Problem 4: Let G be a connected graph that is not a tree. Show that G has at least 2 spanning trees.

Problem 5: Let G be a connected graph with at least 2 vertices. Show that there exist distinct vertices u and w such that both G - u and G - w are connected.

Hint: First think about the case where G is a tree.

Problem 6: Either prove or find a counterexample: Suppose that T is a minimum weight spanning tree of a connected weighted graph G. Let u and w be vertices of G. A u, w-path in T must have total weight less than or equal to the total weight of each u, w-path in G.