Problem Set 4: Due Monday, February 11

Problem 1: Describe the set $\{x \in \mathbb{R} : x^2 - 3x - 4 > 0\}$ in another way by writing it as a union of two sets with simpler descriptions. Briefly explain why your set is equal.

Problem 2: Let $A = \{6n : n \in \mathbb{N}\} \cap \{10n : n \in \mathbb{N}\}.$

- a. Write down the smallest 3 elements of A, and briefly explain how you determined them.
- b. Make a conjecture about how to describe A parametrically (no need to prove this conjecture).

Problem 3: Given two sets A and B, we define

$$A\triangle B = \{x : x \text{ is an element of exactly one of } A \text{ or } B\},$$

and we call this set the *symmetric difference* of A and B. For example, we have

$$\{4,5,6,8\} \triangle \{5,6,7,8\} = \{4,7\}.$$

- a. Determine $\{1, 3, 8, 9\} \triangle \{2, 3, 4, 7, 8\}$.
- b. Write $A \triangle B$ in terms of the sets A and B using only the operations of union, intersection, and relative complement (i.e. set difference). Explain.
- c. What are the smallest 9 elements of the set $\{2n : n \in \mathbb{N}\} \triangle \{3n : n \in \mathbb{N}\}$?
- d. Make a conjecture about how to write $\{2n:n\in\mathbb{N}\}$ $\triangle \{3n:n\in\mathbb{N}\}$ as the union of 3 pairwise disjoint sets (no need to prove this conjecture, but do write the 3 sets parametrically).

Problem 4: Define $f: \mathbb{R} \to \mathbb{R}$ by letting $f(x) = e^x$. Write down a description of the set range(f) by carving it out of a set using a property without any quantifiers. Briefly explain why your set is equal (no need to give a formal proof).

Problem 5: Define $f: \mathbb{N}^+ \to \mathbb{N}^+$ by letting f(n) be the number of positive divisors of n. Define $g: \mathbb{N}^+ \to \mathbb{N}$ by letting g(n) be the number of primes less than or equal to n. For example, we have g(1) = 0, g(2) = 1, and q(6) = 3.

- a. Calculate, with explanation, the values of $(g \circ f)(6)$ and $(g \circ f)(36)$.
- b. Find an example, with explanation, of an $n \in \mathbb{N}^+$ with $(g \circ f)(n) = 3$.

Problem 6: Consider the function $f: \mathbb{Q} \to \mathbb{Q}$ given by f(a) = 5a - 3. We clearly have range $(f) \subseteq \mathbb{Q}$ by definition. Thus, to show that $\mathbb{Q} = \operatorname{range}(f)$, it suffices to show that $\mathbb{Q} \subseteq \operatorname{range}(f)$. To do this, we need to show how to take an arbitrary $b \in \mathbb{Q}$, and fill in the blank in $f(\underline{\hspace{1cm}}) = b$ with an element of \mathbb{Q} . In this problem, we first do a few examples, and then handle a general b.

- a. Fill in the blank in $f(\underline{}) = 7$ with an element of \mathbb{Q} .
- b. Fill in the blank in $f(\underline{\hspace{1cm}}) = -53$ with an element of \mathbb{Q} . c. Fill in the blank in $f(\underline{\hspace{1cm}}) = 1$ with an element of \mathbb{Q} .
- d. Let $b \in \mathbb{Q}$ be arbitrary. Fill in the blank in $f(\underline{\hspace{1cm}}) = b$ with an element of \mathbb{Q} (your answer will depend on b), and justify that your choice works.