
Problem Set 17: Due Friday, November 14

Problem 1: Does
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Explain.
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is true.

Problem 3: Working in P3, consider the following functions:

• f1(x) = x3 + 2x2 + x.

• f2(x) = −3x3 − 5x2 + x + 2.

• f3(x) = x2 − x + 1.

• g(x) = x3 + 8x2 + 7.

Is g ∈ Span(f1, f2, f3)? Explain.

Problem 4: Let V be the vector space of all 2× 2 matrices. Does
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Explain.

Problem 5: Show that the only subspaces of R are {0} and R.
Hint: Suppose that W is a subspace of R with W 6= {0}. Explain why every element of R is in W .

Problem 6: In Problem 5 on Problem Set 14, you showed that
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was a subspace of R3. Show that
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by giving a double containment proof.
Aside: Using this result, we can instead apply Proposition 3.16 to conclude that W is a subspace of R3.


