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1 Mathematical Induction

Suppose that we want to prove that a certain statement is true for all natural numbers. In other words, we
want to do the following:

• Prove that the statement is true for 0.

• Prove that the statement is true for 1.

• Prove that the statement is true for 2.

• Prove that the statement is true for 3.

• . . . .

Of course, since there are infinitely many natural numbers, going through each one in turn does not work
because we will never handle them all this way. How can we get around this? Suppose that when we
examine the first few proofs above that they look the same except that we replace 0 by 1 everywhere, or 0
by 2 everywhere, etc. In this case, one is tempted to say that “the pattern continues” or something similar,
but that is not convincing because we can’t be sure that the pattern does not break down when we reach
5419. One way to argue that the “the pattern continues” and handle all of the infinitely many possibilities
at once is to take an arbitrary natural number n, and prove that the statement is true for n using only the
fact that n is a natural number (but not any particular natural number).

This method of taking an arbitrary n ∈ N and proving that the statement is true for n is the standard way
of proving a statement involving a “for all” quantifier. This technique also works to prove that a statement
is true for all real numbers or for all matrices, as long as we take an arbitrary such object. However, there
is a different method one can use to prove that every natural number has a certain property, and this one
does not carry over to other settings like the real numbers. The key fact is that the natural numbers start
with 0 and proceed in discrete steps forward. With this in mind, consider what would happen if we could
accomplish each of the following:

• Prove that the statement is true for 0.

• Prove that if the statement is true for 0, then the statement is true for 1.

• Prove that if the statement is true for 1, then the statement is true for 2.

• Prove that if the statement is true for 2, then the statement is true for 3.

• . . . .
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Suppose that we are successful in proving each of these. From the first line, we then know that the statement
is true for 0. Since we now know that it’s true for 0, we can use the second line to conclude that the statement
is true for 1. Since we now know that it’s true for 1, we can use the second line to conclude that the statement
is true for 2. And so on. In the end, we are able to conclude that the statement is true for all natural numbers.

Let’s examine this situation more closely. On the fact of it, each line looks more complicated than the
corresponding line for for a direct proof. However, the key fact is that from the second line onward, we now
have an additional assumption! Thus, instead of proving that the statement is true for 3 without any help,
we can now use the assumption that the statement is true for 2 in that argument. Extra assumptions are
always welcome because we have more that we can use in the actual argument.

Of course, as in our discussion at the beginning of this section, we can’t hope to prove each of these
infinitely many things one at a time. In an ideal world, the arguments from the second line onward all
look exactly the same with the exception of replacing the number involved. Thus, the idea is to prove the
following:

• Prove that the statement is true for 0.

• Prove that if the statement is true for n, then the statement is true for n+ 1.

Notice that for the second line, we would need to prove that it is true for an arbitrary n ∈ N, just like we
would have to in a direct argument. An argument using these method is called a proof by (mathematical)
induction, and it is an extremely useful and common technique in mathematics. We can also state this
approach formally in terms of sets, allowing us to bypass the vague notion of “statement” that we employed
above.

Fact 1.1 (Principle of Mathematical Induction on N). Let X ⊆ N. Suppose that the following are true:

• 0 ∈ X (the base case).

• n+ 1 ∈ X whenever n ∈ X (the inductive step).

We then have that X = N.

Once again, here’s the intuitive argument for why induction is valid. By the first assumption, we know
that 0 ∈ X. Since 0 ∈ X, the second assumption tells us that 1 ∈ X. Since 1 ∈ X, the second assumption
again tells us that 2 ∈ X. By repeatedly applying the second assumption in this manner, each element of N
is eventually determined to be in X. Notice that a similar argument works if we start with a different base
case, i.e. if we start by proving that 3 ∈ X and then prove the inductive step, then it follows that n ∈ X for
all n ∈ N with n ≥ 3.

Although we have stated induction with a base case of 0, it is also possible to give an inductive proof
that starts at a different natural. For example, if we prove a base case the 4 ∈ X, and we prove the usual
inductive step that n+ 1 ∈ X whenever n ∈ X, then we can conclude that n ∈ X for all n ∈ N with n ≥ 4,
i.e. that {n ∈ N : n ≥ 4} ⊆ X.

We now give many examples of proofs by induction. For our first example, we establish a formula for the
sum of the first n positive natural numbers.

Proposition 1.2. For any n ∈ N+, we have

n∑
k=1

k =
n(n+ 1)

2
,

i.e.

1 + 2 + · · ·+ n =
n(n+ 1)

2
.
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We give two proofs. The first is a clever argument that avoids induction, while the second is a typical
application of induction.

Proof 1. We first give a proof with induction. Let n ∈ N+ be arbitrary. Let S = 1 + 2 + · · · + (n− 1) + n.
We also have S = n+ (n− 1) + · · ·+ 2 + 1. Adding both of these we conclude that

2S = (n+ 1) + (n+ 1) + · · ·+ (n+ 1) + (n+ 1)

and hence
2S = n(n+ 1).

Dividing both sides by 2, we conclude that

S =
n(n+ 1)

2

so 1 + 2 + · · ·+ (n− 1) + n = n(n+1)
2 . Since n ∈ N+ was arbitrary, the result follows.

Proof 2. We now give a proof using induction. Since we are proving something about all elements of N+, we
start with a base case of 1.

• Base Case: For n = 1, the sum on the left-hand side is 1, and the right-hand side is 1·2
2 = 1. Thus,

that statement is true when n = 1.

• Inductive Step: Assume that the statement is true for some fixed n ∈ N+, i.e. suppose that n is a
number for which we know that

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

We then have

1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1) (by the inductive hypothesis)

=
n2 + n+ 2n+ 2

2

=
n2 + 3n+ 2

2

=
(n+ 1)(n+ 2)

2

=
(n+ 1)((n+ 1) + 1)

2
.

Thus, the statement is true for n+ 1.

By induction, we conclude that

1 + 2 + · · ·+ n =
n(n+ 1)

2

for all n ∈ N+.

In the previous proof, we could have written it using the set-theoretic form of induction by letting

X =

{
n ∈ N+ :

n∑
k=1

i =
n(n+ 1)

2

}
,

and then used the principle of induction to argue that X = N+. Typically, we will avoid formally writing
the set, and working in this way, but it is always possible to translate arguments into the corresponding
set-theoretic approach.
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Proposition 1.3. For any n ∈ N+, we have

n∑
k=1

(2k − 1) = n2,

i.e.
1 + 3 + 5 + 7 + · · ·+ (2n− 1) = n2.

Proof. We give a proof by induction.

• Base Case: Suppose that n = 1. We have

1∑
k=1

(2k − 1) = 2 · 1− 1 = 1,

so the left hand-side is 1. The right-hand side is 12 = 1. Thus, the statement is true when n = 1.

• Inductive Step: Assume that the statement is true for some fixed n ∈ N+, i.e. suppose that n is a
number for which we know that

n∑
k=1

(2k − 1) = n2.

Notice that 2(n+ 1)− 1 = 2n+ 2− 1 = 2n+ 1, hence

n+1∑
k=1

(2k − 1) = [

n∑
k=1

(2k − 1)] + [2(n+ 1)− 1]

= [

n∑
k=1

(2k − 1)] + (2n+ 1)

= n2 + (2n+ 1) (by induction)

= (n+ 1)2.

Thus, the statement is true for n+ 1.

By induction, we conclude that
n∑

k=1

(2k − 1) = n2

for all n ∈ N+.

Although induction is a useful tool for proving certain equalities, it can also be used in much more flexible
ways. We now give several examples of proving divisibility and inequalities by induction.

Proposition 1.4. For all n ∈ N, we have 3 | (4n − 1).

Proof. We give a proof by induction.

• Base Case: Suppose that n = 0. We have 40 − 1 = 1 − 1 = 0, hence 3 | (40 − 1) because 3 · 0 = 0.
Thus, the statement is true when n = 0.
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• Inductive Step: Assume that the statement is true for some fixed n ∈ N+, i.e. suppose that n is a
number for which we know that 3 | (4n − 1). Fix k ∈ Z with 3k = 4n − 1. We then have

4n+1 − 1 = 4 · 4n − 1

= 4 · (3k + 1)− 1

= 12k − 3

= 3 · (4k − 1).

Since 4k − 1 ∈ Z, we conclude that 3 | (4n+1 − 1). Thus, the statement is true for n+ 1.

By induction, we conclude that 3 | (4n − 1) for all n ∈ N.

Proposition 1.5. We have 2n+ 1 < n2 for all n ∈ N with n ≥ 3.

Proof. We give a proof by induction.

• Base Case: Suppose that n = 3. We have 2 · 3 + 1 = 7 and 32 = 9, so 2 · 3 + 1 < 32. Thus, the
statement is true when n = 3.

• Inductive Step: Assume that the statement is true for some fixed n ∈ N with n ≥ 3, i.e. suppose that
n ≥ 3 is a number for which we know that 2n+ 1 < n2. Since 2n+ 1 ≥ 2 · 3 + 1 = 7 > 2, we then have

2(n+ 1) + 1 = 2n+ 3

= (2n+ 1) + 2

= n2 + 2

< n2 + 2n+ 1

= (n+ 1)2.

Thus, the statement is true for n+ 1.

By induction, we conclude that 2n+ 1 < n2 for all n ∈ N with n ≥ 3.

Proposition 1.6. We have n2 < 2n for all n ≥ 5.

Proof. We give a proof by induction.

• Base Case: Suppose that n = 5. We have 52 = 25 and 25 = 32, so 52 < 25. Thus, the statement is
true when n = 5.

• Inductive Step: Assume that the statement is true for some fixed n ∈ N with n ≥ 5, i.e. suppose that
n ≥ 5 is a number for which we know that n2 < 2n. Since n2 = n · n ≥ 3n = 2n+ n > 2n+ 1, we have
then have

(n+ 1)2 = n2 + 2n+ 1

< n2 + n2

= 2n2

< 2 · 2n

= 2n+1.

Thus, the statement is true for n+ 1.

By induction, we conclude that n2 < 2n for all n ≥ 5.
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Proposition 1.7. For all x ∈ R with x ≥ −1 and all n ∈ N+, we have (1 + x)n ≥ 1 + nx.

On the face of it, this problem looks a little different because we are also quantifying over infinitely many
real numbers x. Since x is coming from R, we can’t induct on x. However, we can take an arbitrary x ∈ R
with x ≥ −1, and then induct on n for this particular x. We now carry out that argument.

Proof. Let x ∈ R be arbitrary with x ≥ −1. For this x, we show that (1 + x)n ≥ 1 + nx for all n ∈ N+ by
induction.

• Base Case: Suppose that n = 1. We then have that (1 + x)1 = 1 + x = 1 + 1x, so certainly
(1 + x)1 ≥ 1 + 1x.

• Inductive Step: Assume that the statement is true for some fixed n ∈ N+, i.e. suppose that n is a
number for which we know that (1 + x)n ≥ 1 + nx. Since x ≥ −1, we have 1 + x ≥ 0, so we can
multiply both sides of this inequality by (1 + x) to conclude that

(1 + x)n · (1 + x) ≥ (1 + nx) · (1 + x).

We then have

(1 + x)n+1 = (1 + x)n · (1 + x)

≥ (1 + nx) · (1 + x) (from above)

= 1 + nx+ x+ nx2

= 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x. (since nx2 ≥ 0)

Hence, we have shown that (1 + x)n+1 ≥ 1 + (n+ 1)x, i.e. that the statement is true for n+ 1.

By induction, we conclude that (1 + x)n ≥ 1 + nx for all n ∈ N+. Since x ∈ R with x ≥ −1 was arbitrary,
the result follows.

2 Strong Induction and Well-Ordering

Remember our original model for induction:

• Prove that the statement is true for 0.

• Prove that if the statement is true for 0, then the statement is true for 1.

• Prove that if the statement is true for 1, then the statement is true for 2.

• Prove that if the statement is true for 2, then the statement is true for 3.

• Prove that if the statement is true for 3, then the statement is true for 4.

• . . . .

In the previous section, we argued why this model was sound and gave many examples. However, upon
closer inspection, it appears that we can assume more. In the second line, when proving that the statement
is true for 1 we are allowed to assume that the statement is true for 0. Now in the third line, when proving
that the statement is true for 2, we only assume that it is true for 1. If we are knocking down the natural
numbers in order, then we’ve already proved that it’s true for 0, so why can’t we assume that as well? The
answer is that we can indeed assume it! In general, when working to prove that the statement is true for a
natural number n, we can assume that the statement is true for all smaller natural numbers. In other words,
we do the following:
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• Prove that the statement is true for 0.

• Prove that if the statement is true for 0, then the statement is true for 1.

• Prove that if the statement is true for 0 and 1, then the statement is true for 2.

• Prove that if the statement is true for 0, 1, and 2, then the statement is true for 3.

• Prove that if the statement is true for 0, 1, 2, and 3, then the statement is true for 4.

• . . . .

Suppose that we are successful in doing this. From the first line, we then know that the statement is true
for 0. Since we now know that it’s true for 0, we can use the second line to conclude that the statement is
true for 1. Since we now know that it’s true for both 0 and 1, we can use the second line to conclude that
the statement is true for 2. And so on. In the end, we are able to conclude that the statement is true for all
natural numbers.

As usual, we can’t hope to prove each of these infinitely many things one at a time. In an ideal world,
the arguments from the second line onward all look exactly the same with the exception of replacing the
number involved. Thus, the idea is to prove the following.

• Prove that the statement is true for 0.

• Prove that if the statement is true for each of 0, 1, 2, . . . , n, then the statement is true for n+ 1.

Alternatively, we can state this as follows:

• Prove that the statement is true for 0.

• Prove that if the statement is true for each of 0, 1, 2, . . . , n − 1, then the statement is true for n (for
n ≥ 1).

An argument using these method is called a proof by strong induction. As we will see in the examples below,
sometimes we need to modify this simple structure to include several base cases in order to get the argument
going. Rather than going through a theoretical discussion of how and why one would do this, it’s easier to
illustrate the technique by example.

We start with an example where we verify a simple closed formed formula for a recursively defined
sequence. Since the sequence uses the past two values to define the current value, regular induction does not
give enough power to complete the proof.

Proposition 2.1. Define a sequence an recursively by letting a0 = 0, a1 = 1, and

an = 3an−1 − 2an−2

for n ≥ 2. Show that an = 2n − 1 for all n ∈ N.

Proof. We prove that an = 2n − 1 for all n ∈ N by strong induction.

• Base Case: We handle two bases where n = 0 and n = 1 because our inductive step will use the result
for two steps back. When n = 0, we have a0 = 0 and 20 − 1 = 1− 1 = 0, so a0 = 20 − 1. When n = 1,
we have a1 = 1 and 21 − 1 = 2− 1 = 1, so a1 = 21 − 1.

• Inductive Step: Let n ≥ 2 and assume that the statement is true for 0, 1, 2, . . . , n− 1, i.e. assume that
am = 2m − 1 for all m ∈ {0, 1, 2, . . . , n − 1}. We prove that the statement is true for n. Notice that
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since n ≥ 2, we have 0 ≤ n − 1 < n and 0 ≤ n − 2 < n, so we know that an−1 = 2n−1 − 1 and
an−2 = 2n−2 − 1. Now

an = 3an−1 − 2an−1 (by definition since n ≥ 2)

= 3 · (2n−1 − 1)− 2 · (2n−2 − 1) (by the inductive hypothesis)

= 3 · 2n−1 − 3− 2 · 2n−2 + 2

= 3 · 2n−1 − 2n−1 − 1

= (3− 1) · 2n−1 − 1

= 2 · 2n−1 − 1

= 2n − 1.

Thus, an = 2n − 1 and so the statement is true for n.

Using strong induction, we conclude that an = 2n − 1 for all n ∈ N.

We now turn to an interesting example of using strong induction to establish when we can solve an
equation in the natural numbers.

Proposition 2.2. If n ∈ N and n ≥ 12, then there exist k, ` ∈ N with n = 3k + 7`.

Proof. We give a proof by strong induction.

• Base Case: We first prove that the statement is true for all n ∈ {12, 13, 14} (we will see why we need
so many base cases in the inductive step below). We have the following cases:

– 12 = 3 · 4 + 7 · 0.

– 13 = 3 · 2 + 7 · 1.

– 14 = 3 · 0 + 7 · 2.

Thus, the statement is true for all n ∈ {12, 13, 14}.

• Inductive Step: Let n ≥ 15 and assume that the statement is true for all k ∈ N with 12 ≤ k < n,
i.e. assume that the statement is true for 12, 13, 14, . . . , n− 1. We prove that the statement is true for
n. Since n ≥ 15, we have 12 ≤ n− 3 < n, so we can use the inductive hypothesis to fix k, ` ∈ N with

n− 3 = 3k + 7`.

Adding 3 to both sides, we see that

n = 3k + 7`+ 3

= 3(k + 1) + 5`.

Since k + 1, ` ∈ N, we conclude that the statement is true for n.

By strong induction, we conclude that for all n ∈ N with n ≥ 12, there exist k, ` ∈ N with n = 3k + 7`.

We can also use strong induction to establish bounds for recursively defined sequences.

Proposition 2.3. Define a sequence recursively by letting f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all
n ≥ 2. We have

fn ≤ 2n

for all n ∈ N.
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Proof. We prove the result by strong induction.

• Base Case: We first handle the cases when n = 0 and n = 1.

– Notice that 20 = 1 > 0, so f0 ≤ 20.

– Notice that 21 = 2 > 1, so f1 ≤ 21.

Thus, the statement is true for n = 0 and n = 1.

• Inductive Step: Suppose that n ≥ 2 and the statement is true for all k ∈ N with k < n. In particular,
we have 0 ≤ n− 2 < n and 0 ≤ n− 1 < n, so the statement is true for both n− 2 and n− 1, and hence
fn−2 ≤ 2n−2 and fn−1 ≤ 2n−1. We then have

fn = fn−1 + fn−2 (since n ≥ 2)

≤ 2n−1 + 2n−2 (from above)

≤ 2n−1 + 2n−1

= 2 · 2n−1

= 2n.

Therefore, fn ≤ 2n, i.e. the statement is true for n.

By strong induction, we conclude that fn ≤ 2n for all n ∈ N.

Once we have such a proof, it is natural to ask how it could be improved. A nearly identical argument
shows that fn ≤ 2n−1 for all n ∈ N. However, if we try to show that fn ≤ 2n−2 for all n ∈ N, then the
inductive step goes through without a problem, but the base case of n = 1 does not work. As a result, the
argument fails.

Can we obtain a significantly better upper bound for fn than 2n−1? In particular, can we use an
exponential whose base is less than 2? If we replace 2 with a number α > 1, i.e. try to prove that fn ≤ αn

(or fn ≤ αn−1), then the base case goes through without a problem. In the inductive step, the key fact that
we used was that 2n−1 + 2n−2 ≤ 2n for all n ∈ N. If we replace 2 by and α > 1 with the property that
αn−1 + αn−2 ≤ αn for all n ∈ N, then we can carry out the argument. Dividing through by αn−2, we want
to find the smallest possible α > 1 such that α + 1 ≤ α2, which is equivalent to α2 − α − 1 ≥ 0. Using the
quadratic formula, the solutions to x2 − x− 1 = 0 are

x =
1±
√

5

2
.

Now 1+
√
5

2 > 1, so we now go back and check that we can use it in an inductive argument. In fact, we can
use it as a lower bound too (due to the fact that we get equality at the necessary step), so long as we change
the exponent slightly and start with f1.

Proposition 2.4. Define a sequence recursively by letting f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all

n ≥ 2. Let φ = 1+
√
5

2 and notice that φ2 = φ+ 1 (either from above, or by direct calculation). We have

φn−2 ≤ fn ≤ φn−1

for all n ∈ N+.

Proof. We prove the result by strong induction.
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• Base Case: We first handle the cases when n = 1 and n = 2. Notice that

φ =
1 +
√

5

2
>

1 + 2

2
=

3

2
,

hence

φ−1 <
2

3
.

We also have

φ =
1 +
√

5

2
<

1 + 3

2
= 2.

Since f1 = 1 = f2, we have
φ−1 < f1 = φ0

and
φ0 = f2 < φ1.

Therefore, the statement is true for n = 1 and n = 2.

• Inductive Step: Suppose that n ≥ 3 and the statement is true for all k ∈ N+ with k < n. In particular,
we have 1 ≤ n− 2 < n and 1 ≤ n− 1 < n, so the statement is true for both n− 2 and n− 1, and hence

φn−4 ≤ fn−2 ≤ φn−3 and φn−3 ≤ fn−1 ≤ φn−2

We have

fn = fn−1 + fn−2 (since n ≥ 3)

≥ φn−3 + φn−4 (from above)

= φn−4(φ+ 1)

= φn−4 · φ2

= φn−2,

and also

fn = fn−1 + fn−2 (since n ≥ 3)

≤ φn−2 + φn−3 (from above)

= φn−3(φ+ 1)

= φn−3 · φ2

= φn−1.

Therefore, φn−2 ≤ fn ≤ φn−1, i.e. the statement is true for n.

By strong induction, we conclude that φn−2 ≤ fn ≤ φn−1 for all n ∈ N+.

Closely related to strong induction, the following is a core fact about the ordering of the natural numbers:

Fact 2.5 (Well-Ordering of N). Every nonempty set X ⊆ N has a smallest element. That is, for all nonempty
X ⊆ N, there exists m ∈ X such that m ≤ n for all n ∈ X.
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Why is this statement true? Suppose that X ⊆ N is nonempty. If 0 ∈ X, then 0 is clearly the smallest
element of X, and we are done. Suppose then that 0 /∈ X. If 1 ∈ X, then 1 is the smallest element of X,
and we are done. Suppose then that 1 /∈ X. If 2 ∈ X, then 2 is the smallest element of X, and we are
done. Continuing this process, we must eventually reach a point where we encounter an element X, because
otherwise we would eventually argue that each fixed n ∈ N is not an element of X, which would then imply
that X = ∅.

This argument, like the arguments for induction and strong induction, is intuitively reasonable and
convincing. However, it is not particularly formal. It is possible to formally prove each of induction, strong
induction, and well-ordering from any of the others, so in a certain precise sense the three statements are
equivalent. If you’re interested, think about how to prove well-ordering using induction (along with some of
the other implications). However, since all three are intuitively very reasonable, and it’s beyond the scope of
the course to construct the natural numbers and articulate exactly what we are allowed to use in the proofs
of these equivalences, we will omit the careful arguments.

Notice that the given statement is false if we consider subsets of Z or R (rather than subsets of N). For
example, Z is trivially a nonempty subset of Z, but it does not have a smallest element. Even if we consider
only subsets of the nonnegative reals {x ∈ R : x ≥ 0}, we can find nonempty subsets with no smallest
element (for example, the open interval (0, 1) = {x ∈ R : 0 < x < 1} does not have a smallest element).

We can often write an inductive proof as a proof using well-ordering, by considering a smallest potential
counterexample. For example, here is a proof of Proposition 2.2 (if n ∈ N and n ≥ 12, then there exist
k, ` ∈ N with n = 3k + 7`) using a well-ordering argument.

Proof of Proposition 2.2. Consider the set

X = {n ∈ N : n ≥ 12 and there does not exist k, ` ∈ N with n = 3k + 7`}

of counterexamples to the given statement. It suffices to show that X = ∅. Suppose instead that X 6= ∅. By
well-ordering, we can let m be the smallest element of X. Notice that m /∈ {12, 13, 14} because we have the
following:

• 12 = 3 · 4 + 7 · 0.

• 13 = 3 · 2 + 7 · 1.

• 14 = 3 · 0 + 7 · 2.

Therefore, we must have m ≥ 15, and hence 12 ≤ m − 3 < 15. Now m is the smallest element of X, so we
must have m− 3 /∈ X, and hence we can fix k, ` ∈ N with m− 3 = 3k + 7`. Adding 3 to both sides, we see
that

m = 3k + 7`+ 3

= 3(k + 1) + 5`.

Since k + 1, ` ∈ N, we conclude that m /∈ X, which is a contradiction. Therefore, it must be the case that
X = ∅, giving the result.
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