Strong Induction

Joseph R. Mileti
February 13, 2015

1 Strong Induction

Remember our original model for induction:
e Prove that the statement is true for 0.
e Prove that if the statement is true for 0, then the statement is true for 1.
e Prove that if the statement is true for 1, then the statement is true for 2.
e Prove that if the statement is true for 2, then the statement is true for 3.
e Prove that if the statement is true for 3, then the statement is true for 4.
o ...

In the previous section, we argued why this model was sound and gave many examples. However, upon
closer inspection, it appears that we can assume more. In the second line, when proving that the statement
is true for 1 we are allowed to assume that the statement is true for 0. Now in the third line, when proving
that the statement is true for 2, we only assume that it is true for 1. If we are knocking down the natural
numbers in order, then we’ve already proved that it’s true for 0, so why can’t we assume that as well? The
answer is that we can indeed assume it, and in general when working to prove that the statement is true for
a natural number n, we can assume that we know it is true for all smaller values. In other words, we do the
following:

e Prove that the statement is true for 0.

e Prove that if the statement is true for 0, then the statement is true for 1.

e Prove that if the statement is true for 0 and 1, then the statement is true for 2.

e Prove that if the statement is true for 0, 1, and 2, then the statement is true for 3.

e Prove that if the statement is true for 0, 1, 2, and 3, then the statement is true for 4.
o ...

Suppose that we are successful in doing this. From the first line, we then know that the statement is true
for 0. Since we now know that it’s true for 0, we can use the second line to conclude that the statement is
true for 1. Since we now know that it’s true for both 0 and 1, we can use the second line to conclude that
the statement is true for 2. And so on. In the end, we are able to conclude that the statement is true for all
natural numbers.

As usual, we can’t hope to prove each of these infinitely many things one at a time. In an ideal world,
the arguments from the second line onward all look exactly the same with the exception of replacing the
number involved. Thus, the idea is to prove the following.



e Prove that the statement is true for 0.

e Prove that if the statement is true for each of 0,1,2,...,n, then the statement is true for n + 1.
Alternatively, we can state this as follows:

e Prove that the statement is true for 0.

e Prove that if the statement is true for each of 0,1,2,...,n — 1, then the statement is true for n (for
n >1).

An argument using these method is called a proof by strong induction. As we will see in the examples below,
sometimes we need to modify this clean structure to include several base cases to get the argument going.
Rather than going through a theoretical discussion of how and why one would do this, it’s easier to illustrate
the technique by example.

Proposition 1.1. Define a sequence a,, recursively by letting ag =0, a1 = 1, and
anp = 3an_1 — 2an_2
forn > 2. Show that a,, = 2™ — 1 for allm € N.

Proof. We prove that a,, = 2" — 1 for all n € N by strong induction.

e Base Case: We handle two bases where n = 0 and n = 1 because our inductive step will use the result
for two steps back. When n =0, we have ag =0and 2°—1=1—-1=0,80 ag =2°—1. Whenn =1,
wehavea; =land 2! —1=2—-1=1,s0a; =2' — 1.

e Inductive Step: Let n > 2 and assume that the statement is true for 0,1,2,...,n — 1, i.e. assume that
apy = 2™ —1for all m € {0,1,2,...,n — 1}. We prove that the statement is true for n. Notice that
since n > 2, we have 0 < n—1 <nand 0 <n—2 < n, so we know that a,_1 = 2n=1 _ 1 and
Qp_o =2""2 — 1. Now

anp = 3ap_1 — 21 (by definition since n > 2)
=32t -1)—-2.-(2"%-1) (by the inductive hypothesis)
=3.2"1-3-2.2""2 42
=3.2nt_ontl
=(B-1)-2""1 -1
=2.2""1 1
=2"—-1

Thus, a, = 2" — 1 and so the statement is true for n.
Using strong induction, we conclude that a,, = 2" — 1 for all n € N. O
Proposition 1.2. Ifn € N and n > 12, then there exist k,¢ € N with n = 4k + 5¢.
Proof. We give a proof by strong induction.

e Base Case: We first prove that the statement is true for n € {12,13,14,15} (we will see why we need
so many base cases below). We have

- 12=4-34+5-0



—13=4-2+5-1
—14=4-1+5-2
—15=4-0+5-3

Thus, the statement is true for n € {12,13, 14, 15}.

e Inductive Step: Let n > 16 and assume that the statement is true for 12,13,14,...,n — 1. We prove
that the statement is true for n. Since n > 16, we have 12 < n—4 < n. Since 12 < n —4 < 4, we know
that there exists k,¢ € N with

n—4 =4k + 5¢.

Adding 4 to both sides, we conclude that
n=4k+50+4=4(k+1)+5¢
Since k£ + 1,7 € N, we conclude that the statement is true for n.
By (strong) induction, we conclude that for all n € N with n > 12, there exist k,¢ € N with n = 4k +5¢. O

Theorem 1.3. Let b € N with b > 2. For all n € N, there exists ag,a1,as,...,a, € N with 0 < a; < b for
all i such that
n= akbk + ak,lbk_l +---4+aib+ap

Proof. Let b € N with b > 2 be arbitrary. With this fixed b, we prove the result by strong induction on n.
e Base Case: Let n =1. We may take k =1 and ag =1 < b.

e Inductive Step: Let n > 2 and assume that the statement is true for 1,2,...,n — 1. Fix ¢,r € N with
n=qb+r and 0 <r < b. Notice that ¢ < n because ¢ > n would imply that

n=qgb+r>gb>nb>2n>n

a contradiction. Therefore, since 0 < ¢ < n, we may use strong induction to conclude that we can fix
ap,ai,az,...,ar € Nwith 0 < a; < b for all 4 such that

q=apb® + ap_ 10"+ a4+ ag.
We then have
n=qgb+r
= (akbk +ap_ 1"+ ab+ ap)b+r
= akb’Hl + ak,lbk 4ot a b+ apgb+r
Since 0 < r < b, we have shown that the statement is true for n.
The result follows by induction. O
We now turn our attention back to divisibility. We begin with a fundamental result.
Proposition 1.4. Let a,b,c € Z.
1. Ifa | b, then a | bk for all k € Z.
2. Ifa|bandal|c, thenal (b+c).



3. Ifa|bandalc, then a| (bk + cl) for all k.l € Z.
Proof.
1. Suppose that a | b. Let k € Z be arbitrary. Since a | b, we may fix m € Z with b = am. We then have
bk = (am)k = a(mk)
Since mk € 7Z, it follows that a | bk. Since k € Z was arbitrary, the result follows.

2. Suppose that a | b and a | ¢. Since a | b, we may fix m € Z with b = am. Since a | ¢, we may fix n € Z
with ¢ = an. We then have
b+c=am+an=a(m+n)

Since m + n € Z, it follows that a | b+ c.

3. This follows by combining 1 and 2 as follows. Suppose that a | b and a | ¢. Let m,n € Z be arbitrary.
Since a | b, we conclude from part 1 that a | bm. Since a | ¢, we conclude from part 1 again that
a | cn. Using part 2, it follows that a | (bm + en). Since m,n € Z were arbitrary, the result follows.
Alternatively, you should try to prove this directly without using the first two parts.

O

Definition 1.5. Suppose that a,b € Z. We say that d € Z is a common divisor of a and b if both d | a and
d|b.

The common divisors of 120 and 84 are {£1, +2, +3, +4, 46, £12} (we will see a careful argument below).
The common divisors of 10 and 0 are {£1,£2, £5,+10}. Every element of Z is a common divisor of 0 and
0. The following little proposition is fundamental to this entire section.

Proposition 1.6. Suppose that a,b,q,r € Z and a = gb+r (we need not have 0 < r < |b|). For any d € Z,
we have that d is a common divisor of a and b if and only if d is a common divisor of b and r, i.e.

{d€Z:d is a common divisor of a and b} ={d € Z : d is a common dwisor of b and r}.

Proof. Suppose first that d is a common divisor of b and r. Since d | b, d | r, and a = ¢b + r = bg + r1, we
may use Proposition 1.4 to conclude that d | a.

Conversely, suppose that d is a common divisor of @ and b. Since d | a, d | b, and r = a — ¢b = al +b(—q),
we may use Proposition 1.4 to conclude that d | r. O

For example, suppose that we are trying to find the set of common divisors of 120 and 84 (we wrote them
above, but now want to justify it). We repeatedly do division to reduce the problem as follows:

120=1-84 + 36
84 =2-36+12
36=3-1240

The first line tells us that the set of common divisors of 120 and 84 equals the set of common divisors of
84 and 36. The next line tells us that the set of common divisors of 84 and 36 equals the set of common
divisors of 36 and 12. The last line tells us that the set of common divisors of 36 and 12 equals the set of
common divisors of 12 and 0. Now the set of common divisors of 12 and 0 is simply the set of divisors of 12
(because every number divides 0). Putting it all together, we conclude that the set of common divisors of
120 and 84 equals the set of divisors of 12.

Definition 1.7. Let a,b € Z. We say that an element d € Z is a greatest common divisor of a and b if:



e d>0
e d is a common divisor of a and b.
e Whenever ¢ € Z is a common divisor of a and b, we have ¢ | d.

Notice that we are not defining the greatest common divisor of a and b to be the largest divisor of a and
b. The primary reason we do not is because this description fails to capture the most fundamental property
(namely that of being divisible by all other divisors, not just larger than them). Furthermore, if we were
to take that definition, then 0 and 0 would fail to have a greatest common divisor because every integer is
a common divisor of 0 and 0. With this definition however, it is a straightforward matter to check that 0
satisfies the above three conditions.

Since we require more of a greatest common divisor than just picking the largest, we first need to check
that they do indeed exist. The proof is an inductive formulation of the above method of calculation.

Theorem 1.8. FEvery pair of integers a,b € Z has a unique greatest common divisor.

We first sketch the idea of the proof in the case where a,b € N. If b = 0, we are done because it is
simple to verify that a is a greatest common divisor of ¢ and 0. Suppose then that b # 0. Fix ¢,r € N with
a=gb+r and 0 < r < b. Now the idea is to assert inductively the existence of a greatest common divisor
of b and r because this pair is “smaller” than the pair a and b. The only issue is how to make this intuitive
idea of “smaller” precise. There are several ways to do this, but perhaps the most straightforward is to only
induct on b. Thus, our base case handles all pairs of form (a,0). Next, we handle all pairs of the form (a, 1)
and in doing this we can use the fact the we know the result for all pairs of the form (a’,0). Notice that
we can we even change the value of the first coordinate here which is why we used a’. Then, we handle all
pairs of the form (a,2) and in doing this we can use the fact that we know the result for all pairs of the form
(a’,0) and (a’,1). We now begin the formal argument.

Proof. We begin by proving existence only in the special case where a,b € N. We use (strong) induction on
b to prove the result. That is, we let

X ={beN:For all a € N, there exists a greatest common divisor of a and b}

and prove that X = N by strong induction.

e Base Case: Suppose that b = 0. Let a € N be arbitrary. We then have that the set of common divisors
of a and b equals the set of divisors of a (because every integer divides 0), so a satisfies the requirement
of a greatest common divisor of ¢ and 0. Since a € N was arbitrary, we showed that there exists a
greatest common divisor of a and 0 for every a € N, hence 0 € X.

o Inductive Step: Suppose then that b € NT and we know the result for all smaller natural numbers. In
other words, we are assuming that ¢ € X whenever 0 < ¢ < b. We prove that b € X. Let a € N be
arbitrary. From above, we may fix ¢, € Z with a = ¢b+r and 0 < r < b. Since 0 < r < b, we know
by strong induction that » € X, hence b and r have a greatest common divisor d. By Proposition 1.6,
the set of common divisors of a and b equals the set of common divisors of b and r. It follows that
d is a greatest common divisor of a and b. Since a € N was arbitrary, we showed that there exists a
greatest common divisor of a and b for every a € N, hence b € X.

Therefore, we have shown that X = N, which implies that whenever a,b € N, there exists a greatest common
divisor of a and b.

To turn the argument into a proof for all a,b € Z, we simply note the set of divisors of an element m € Z
equals the set of divisors of —m. So, for example, if a < 0 but b > 0 we can simply take a greatest common
divisor of —a and b (which exists since —a, b € N) and note that it will also be a greatest common divisor of
a and b. A similar argument works if ¢ > 0 and b < 0, or if both @ < 0 and b < 0.



For uniqueness, suppose that ¢ and d are both greatest common divisors of a and b. Since d is a greatest
common divisor and ¢ is a common divisor, we know by the last condition that ¢ | d. Similarly, since ¢ is
a greatest common divisor and d is a common divisor, we know by the last condition that d | ¢. Therefore,
either ¢ = d or ¢ = —d. Using the first requirement that a greatest common divisor must be nonnegative,
we must have ¢ = d. O

Definition 1.9. Let a,b € Z. We let ged(a,b) be the unique greatest common divisor of a and b.

For example we have ged(120,84) = 12 and ged(0,0) = 0. The following corollary is immediate from
Proposition 1.6.

Corollary 1.10. Suppose that a,b,q,7 € Z and a = gb+ r. We have ged(a,b) = ged(b, r).

The method of using repeated division and this corollary to reduce the problem of calculating greatest
common divisors is known as the Fuclidean Algorithm. We saw it in action of above with 120 and 84. Here
is another example where we are trying to compute ged(525,182). We have

525 =2-182 + 161
182 =1-161+21
161=7-21+14
21=1-14+7
14=2-740
Therefore, ged(525,182) = ged(7,0) = 7.
Theorem 1.11. For all a,b € Z, there exist k, ¢ € Z with ged(a,b) = ka + £b.

Proof. We begin by proving existence in the special case where a,b € N. We use induction on b to prove the
result. That is, we let

X ={beN:Forall a € N, there exist k,¢ € Z with gcd(a,b) = ka + £b}
and prove that X = N by strong induction.
e Base Case: Suppose that b = 0. Let a € N be arbitrary. We then have that
ged(a,b) = ged(a,0) = a
Since a =1-a+0-b, so we may let Kk =1 and ¢ = 0. Since a € N was arbitrary, we conclude that

0eX.

e Inductive Step: Suppose then that b € NT and we know the result for all smaller nonnegative values.
In other words, we are assuming that ¢ € X whenever 0 < ¢ < b. We prove that b € X. Let a € N be
arbitrary. From above, we may fix ¢,r € Z with a = ¢gb+r and 0 < r < b. We also know from above
that ged(a,b) = ged(b,r). Since 0 < r < b, we know by strong induction that r € X, hence there exist
k,l € Z with

ged(b,r) = kb + or

Now r = a — gb, so

ged(a, b) = ged(b, r)

=kb+0r

= kb+ (a — gb)
— kb + la — qbl
=Lla+ (k—gl)b

Since a € N was arbitrary, we conclude that b € X.



Therefore, we have shown that X = N, which implies that whenever a,b € N, there exists k,¢ € Z with
ged(a, b) = ka + £b. O

Given a, b € Z, we can explicitly calculate k, ¢ € Z by “winding up” the work created from the Euclidean
Algorithm. For example, we saw above that ged(525,182) = 7 by calculating

525 =2-182 + 161
182 =1-161+21
161 =7-21+14
21=1-14+7
14=2-7+0

We now use these steps in reverse to calculate:

7=1-7+0-0
=1-7+0-(14-2-7)
—0-1441-7
—0-1441-(21—1-14)
=1-21+(~1) 14
=1-21+(=1)- (161 —7-21)
= (—1)-161+8-21

= (~1)-161 +8- (182 —1-161)
=8-182 + (—9) - 161
—=8-182+ (—9) - (525 — 2 - 182)
= (—9) - 525 4 26 - 182

This wraps everything up perfectly, but it is easier to simply start at the fifth line.
We end this section with a useful result.

Definition 1.12. Two elements a,b € Z are relatively prime if ged(a,b) = 1.
Proposition 1.13. Let a,b,c € Z. If a | be and ged(a,b) = 1, then a | c.

Proof. Since a | be, we may fix m € Z with bc = am. Since ged(a,b) = 1, we may fix k, ¢ € Z with ak+bl = 1.
Multiplying this last equation through by ¢ we conclude that akc + blc = ¢, so

¢ = akc + £(be)
= akc+ nal
= a(kc+ nl)

It follows that a | c. O



