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1 Mathematical Statements and Mathematical Truth

Unfortunately, many people view mathematics only as complicated equations and elaborate computational
techniques (or algorithms) that lead to the correct answers to a narrow class of problems. Although each of
these are indeed aspects of mathematics, neither reflects the true nature of the subject. Mathematics, at its
core, is about determining truth, at least for certain precise mathematical statements. Before we consider
some examples, let’s recall some notation and terminology for the standard “universes” of numbers.

• N = {0, 1, 2, 3, . . . } is the set of natural numbers.

• N+ = {1, 2, 3, . . . } is the set of positive natural numbers.

• Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } is the set of integers.

• Q is the set of rational numbers, i.e. those numbers that can be written as a fraction (i.e. quotient)
of integers. For example, 1

2 , −3
17 , etc. are all rational numbers. Notice that all integers are rational

numbers because we can view 5 as 5
1 , for example.

• R is the set of real numbers, i.e. those numbers that we can express as a possibly infinite decimal.
Every rational number is a real number, but π, e,

√
2, etc. are all real numbers that are not rational.

There are other important universes of numbers, such as the complex numbers C and others that will be
encountered in Abstract Algebra. However, we will focus on the above examples in our study. To denote
that a given number n belongs to one of the above collections, we will use the ∈ symbol. For example, we
can write n ∈ Z as shorthand for “n is an integer”. We will elaborate on how to use the symbol ∈ when we
discuss more general set theory notation.

Returning to our discussion of truth, a mathematical statement is either objectively true or false, without
reference to the outside world and without any additional conditions or information. For some examples,
consider the following (we’ve highlighted some key words that we will discuss in the next few sections):

1. 35 + 81 is equal to 116.

2. The sum of two odd integers is always an even integer.

3. The difference of two prime numbers is always an even integer.

4. There exists a simultaneous solution to the three equations

2x + 8z = 6
7x − 3y + 18z = 15
−3x + 3y − 2z = −1

in R3, i.e. there exists a choice of real numbers for x, y, and z making all three equations true.
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5. The remainder when dividing 3332856 by 2857 is 1.

6. Every continuous function is differentiable.

7. Every differentiable function is continuous.

8. There exist positive natural numbers a, b, c with a3 + b3 = c3.

9. The digits of π eventually form a repeating sequence.

10. The values of 0, 1, 2, . . . , 9 occur equally often in the infinite decimal expansion of π.

Which of these 10 assertions are true and which are false? In many cases, the answer is not obvious. Here
are the results:

1. True. This statement can be verified by a simple calculation.

2. True. However, it’s not immediately obvious how we could ever verify it. After all, there are infinitely
many odd numbers, so we can’t simply try them all.

3. False. To show that it is false, it suffices to give just one counterexample. Notice that 7 and 2 are
prime, but 7− 2 = 5 and 5 is not even.

4. False. Again, it may not be obvious how to show that no possible choice of x, y, and z exist. We will
develop systemic ways to solve such problems later.

5. True. It is possible to verify this by calculation (by using a suitably programmed computer). However,
there are better ways to understand that this is true, as you will see in Elementary Number Theory or
Abstract Algebra.

6. False. The function f(x) = |x| is continuous everywhere but is not differentiable at 0.

7. True. See Calculus or Analysis.

8. False. This is a special case of something called Fermat’s Last Theorem, and it is quite difficult to
show (see Algebraic Number Theory).

9. False. This follows from the fact that π is an irrational number, i.e. not an element of Q, but this is
not easy to show.

10. We still don’t know whether this is true or false! Numerical evidence (checking the first billion digits
directly, for example) suggests that it may be true. Mathematicians have thought about this problem
for a century, but we still do not know how to answer it definitively.

Recall that a mathematical statement must be either true or false. In contrast, an equation is typically
neither true nor false when viewed in isolation, and hence is not a mathematical statement. For example, it
makes no sense to ask if y = 2x+ 3 is true or false, because it depends which numbers we plug in for x and
y. When x = 6 and y = 15, then the statement becomes true, but when x = 3 and y = 7, the statement is
false. For a more interesting example, the equation

(x+ y)2 = x2 + 2xy + y2

is not a mathematical statement as given, because we have not been told how to interpret the x and the y.
Is the statement true when x is my cat Cayley and y is my cat Maschke? (Adding them together is scary
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enough, and I don’t even want to think about what it would mean to square them.) We need to provide
context for where x and y can come from. To fix this, we can write

“For all real numbers x and y, we have (x+ y)2 = x2 + 2xy + y2”,

which is now a true mathematical statement.
You may think that the statement (x + y)2 = x2 + y2 is false, but again it is not a valid mathematical

statement as written. We can instead say that the statement

“For all real numbers x and y, we have (x+ y)2 = x2 + y2”

is false because (1 + 1)2 = 4 while 12 + 12 = 2. However, the mathematical statement

“There exist real numbers x and y such that (x+ y)2 = x2 + y2”

is true because (1 + 0)2 does equal 12 + 02.
Here are a few other examples of statements that are not mathematical statements.

• F = ma and E = mc2: Our current theories of physics say that these equations are true in the real
world whenever the symbols are interpreted properly, but mathematics on its own is a different beast.
As written, these equations are neither true nor false from a mathematical perspective. For example,
if F = 4, m = 1, and a = 1, then F = ma is certainly false.

• a2 + b2 = c2: Unfortunately, most people “remember” this as the Pythagorean Theorem. However, it
is not even a mathematical statement as written. We could fix it by writing “For all right triangles
with side lengths a, b, and c, where c is the length the hypotenuse, we have that a2 + b2 = c2”, in
which case we have a true mathematical statement.

• Talking Heads is the greatest band of all time: Of course, different people can have different opinions
about this. I may believe that the statement is true, but the notion of “truth” here is very different
from the objective notion of truth necessary for a mathematical statement.

• Shakespeare wrote Hamlet: This is almost certainly true, but it’s not a mathematical statement. First,
it references the outside world. Also, it’s at least conceivable that with new evidence, we might change
our minds. For example, perhaps we’ll learn that Shakespeare stole the work of somebody else.

In many subjects, a primary goal is to determine whether certain statements are true or false. However,
the methods for determining truth vary between disciplines. In the natural sciences, truth is often gauged
by appealing to observations and experiments, and then building a logical structure (perhaps using some
mathematics) to convince others of a claim. Economics arguments are built through a combination of current
and historical data, mathematical modeling, and rhetoric. In both of these examples, truth is always subject
to revision based on new evidence. In contrast, mathematics has a unique way of determining the truth or
falsity of a given statement: we provide an airtight, logical proof that verifies its truth with certainty. Once
we’ve succeeded in finding a correct proof of a mathematical statement, we know that it must be true for
eternity. Unlike the natural sciences, we do not have tentative theories that are extremely well-supported
but may be overthrown with new evidence. Thus, mathematics does not have the same types of revolutions
like plate tectonics, evolution by natural selection, the oxygen theory of combustion (in place of phlogiston),
relativity, quantum mechanics, etc. which overthrow the fundamental structure of a subject and cause a
fundamental shift if what statements are understood to be true.

To many, the fact that mathematicians require a complete logical proof with absolute certainty seems
strange. Doesn’t it suffice to simply check the truth of statement in many instances, and then generalize it to
a universal law? Consider the following example. One of the true statements mentioned above is that there
are no positive natural numbers a, b, c with a3 + b3 = c3, so we can not obtain a cube by adding 2 cubes.
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The mathematician Leonhard Euler conjectured that a similar statement held for fourth powers, i.e. that we
can not obtain a fourth power by adding 3 fourth powers. More formally, he conjectured that there are no
positive natural numbers a, b, c, d with a4 + b4 + c4 = d4. For over 200 years it seemed reasonable to believe
this might be true, as it held for all small examples and was a natural generalization of a true statement.
However, it was eventually shown that there indeed are examples where the sum of 3 fourth powers equals
a fourth power, such as the following:

958004 + 2175194 + 4145604 = 4224814.

In fact, this example is the smallest one possible. Thus, even though a4 + b4 + c4 6= d4 for all values positive
natural numbers a, b, c, and d having at most 5 digits, the statement does not hold generally.

In spite of this example, you may question the necessity of proofs for mathematics relevant to the sciences
and applications, where approximations and occasional errors or exceptions may not matter so much. There
are many historical reasons why mathematicians have embraced complete, careful, and logical proofs as the
way to determine truth in mathematics independently from applications. In later math classes, you may
explore some of these internal historical aspects, but here are three direct reasons for this approach:

• Mathematics should exist independently from the sciences because sometimes the same mathematics
applies to different subjects. It is possible that edge cases which do not matter in one subject (say
economics or computer science) might matter in another (like physics). The math needs to be consistent
and coherent on its own without reference to the application.

• In contrast to the sciences where two generally accepted theories that contradict each other in some
instance can coexist for long periods of time (such as relativity and quantum mechanics), mathematics
can not sustain such inconsistencies. As we’ll see, one reason for this is that mathematics allows a
certain type of argument called proof by contradiction. Any inconsistency at all would allow us to
draw all sorts of erroneous conclusions, and the logical structure of mathematics would unravel.

• Unlike the sciences, many areas of math are not subject to direct validation through a physical test. An
idea in physics or chemistry, arising from either a theoretical predication or a hunch, can be verified by
running an experiment. However, in mathematics we often have no way to reliably verify our guesses
through such means. As a result, proofs in mathematics can be viewed as the analogues of experiments
in the sciences. In other words, since mathematics exists independently from the sciences, we need an
internal check for our intuitions and hunches, and proofs play this role.

In the previous examples of mathematical statements , we highlighted two key phrases that appear
incredibly often in mathematical statements: for all and there exists. These two phrases are called
quantifiers in mathematics, and they form the building blocks of more complicated expressions. Occasionally,
these quantifiers appear disguised by a different word choice. Here are a few phrases that mean precisely the
same thing in mathematics:

• For all: For every, For any, Every, Always, . . . .

• There exists: There is, For some, We can find, . . . .

These phrases mean what you might expect. For example, saying that a statement of the form “For all
a, . . . ” is true means that whenever we plug in any particular value for a into the . . . part, the resulting
statement is true. Similarly, saying that a statement of the form “There exists a, . . . ” is true means that
there is at least one (but possibly more) choice of a value to plug in for a so that the resulting statement is
true. Notice that we are not saying that there is exactly one choice. Also, be careful in that the phrase “for
some” used in everyday conversation could be construed to mean that there need to be several (i.e. more
than one) values to plug in for a to make the result true, but in math it is completely synonymous with
“there exists”.
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So how do we prove that a statement that starts with “there exists” is true? For example, consider the
following statement:

“There exists a ∈ Z such that 2a2 − 1 = 71”.

From your training in mathematics up to this point, you may see the equation at the end and immediately
rush to manipulate it using the procedures that you’ve been taught for years. Before jumping into that, let’s
examine the logical structure here. In order to convince somebody that the statement is true, we need only
find (at least) one particular value to plug in for a so that when we compute 2a2−1 we obtain 71. Right? In
other words, if all that we care about is knowing for sure that the statement is true, we just need to verify
that some a ∈ Z has this property. Suppose that we happen to stumble across the number 6 and notice that

2 · 62 − 1 = 2 · 36− 1

= 72− 1

= 71.

At this point, we can assert with confidence that the statement is true and in fact what we’ve just carried
out is a complete proof. Now you may ask yourself “How did we know to plug in 6 here?”, and that is a
good question. However, there is a difference between the creative leap we took and the routine verification
that it worked. Perhaps we arrived at 6 by plugging in numbers until we got lucky. Perhaps we sacrificed
a chicken to get the answer. Perhaps we had a vision. Maybe you copied the answer from a friend or from
online (note: don’t do this). Now we do care very much about the underlying methods to find a, both for
ethical reasons and because sacrificing a chicken may not work if we change the equation slightly. However,
for the logical purposes of this argument, the way that we arrived at our value for a does not matter.

We’re (hopefully) all convinced that we have verified that the statement “There exists a ∈ Z such that
2a2 − 1 = 71” is true, but as mentioned we would like to have routine methods to solve similar problems in
the future so that we do not have to stumble around in the dark nor invest in chicken farms. Of course, the
tools to do this are precisely the material that you learned years ago in elementary algebra. One approach
is to perform operations on both sides of the equality with the goal of isolating the a. If we add 1 to both
sides, we arrive at 2a2 = 72, and after dividing by sides by 2 we conclude that a2 = 36. At this point, we
realize that there are two solutions, namely 6 and −6. Alternatively, we can try bringing the 71 over and
factoring. By the way, this method found two solutions, and indeed −6 would have worked above. However,
remember that proving a “there exists” statement means just finding at least one value that works, so it
didn’t matter that there was more than one solution.

Let’s consider the following more interesting example of a mathematical statement:

“There exists a ∈ R such that 2a5 + 2a3 − 6a2 + 1 = 0”.

It’s certainly possible that we might get lucky and find a real number to plug in that verifies the truth of this
statement. But if the chicken sacrificing doesn’t work, you may be stymied about how to proceed. However,
if you remember Calculus, then there is a nice way to argue that this statement is true without actually
finding a particular value of a. The key fact is the Intermediate Value Theorem from Calculus, which says
that if f : R → R is a continuous function that is positive at some point and negative at another, then it
must be 0 at some point as well. Letting f(x) = 2x5 + 2x3 − 6x2 + 1, we know from Calculus that f(x) is
continuous. Since f(0) = 1 and f(1) = −1, it follows from the Intermediate Value Theorem that there is an
a ∈ R (in fact between 0 and 1) such that f(a) = 0. Thus, we’ve proven that the above statement is true,
so long as you accept the Intermediate Value Theorem. Notice again that we’ve established the statement
without actually exhibiting an a that works.

We can make the above question harder by performing the following small change to the statement:

“There exists a ∈ Q such that 2a5 + 2a3 − 6a2 + 1 = 0”.
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Since we do not know what the value of a that worked above was, we are not sure whether it is an element
of Q. In fact, questions like this are a bit harder. There is indeed a method to determine the truth of a
statement like this, but that’s for another course (see Abstract Algebra). The takeaway lesson here is that
mathematical statements that look quite similar might require very different methods to solve.

How do we prove that a statement that starts with “for all” is true? For example, consider the following
statement:

“For all a, b ∈ R, we have (a+ b)2 = a2 + 2ab+ b2”.

In the previous section, we briefly mentioned this statement, but wrote it slightly differently as:

“For all real numbers x and y, we have (x+ y)2 = x2 + 2xy + y2”.

Notice that these are both expressing the exact same thing. We only replaced the phrase “real numbers”
by the symbol R and changed our choice of letters. Since the letters are just placeholders for the “for all”
quantifier, these two mean precisely the same thing. Ok, so how do we prove the first statement? The
problem is that there are infinitely many elements of R (so infinitely many choices for each of a and b), and
hence there is no possible way to examine each possible pair in turn and ever hope to finish.

The way around this obstacle is write a general argument that works regardless of the values for a and
b. In other words, we’re going to take two completely arbitrary elements of R that we will name as a and
b so that we can refer to them, and then argue that the result of computing (a + b)2 is the same thing as
the result of computing a2 + 2ab+ b2. By taking arbitrary elements of R, our argument will work no matter
which particular numbers are actually chosen for a and b. Thus, the way to handle infinitely many choices
is to give an argument that works no matter which of the infinitely many choices is taken for a and b.

Now in order to do this, we have to start somewhere. After all, with no assumptions at all about how
+ and · work, or what squaring means, we have no way to proceed. Ultimately, mathematics starts with
basic axioms explaining how certain fundamental mathematical objects and operations work, and builds up
everything from there. We won’t go into all of those axioms here, but for the purposes of this discussion we
will make use of the following fundamental facts about the real numbers:

• Commutative Law (for multiplication): For all x, y ∈ R, we have x · y = y · x.

• Distributive Law: For all x, y, z ∈ R, we have x · (y + z) = x · y + x · z.

These facts are often taken as two (of about 12) of the axioms for the real numbers. It is also possible to
prove them from a construction of the real numbers (see Analysis) using more fundamental axioms. In any
event, we can use them to prove the above statement follows. Let a, b ∈ R be arbitrary. We then have that
a+ b ∈ R, and

(a+ b)2 = (a+ b) · (a+ b) (by definition)

= (a+ b) · a+ (a+ b) · b (by the Distributive Law)

= a · (a+ b) + b · (a+ b) (by the Commutative Law)

= a · a+ a · b+ b · a+ b · b (by the Distributive Law)

= a2 + a · b+ a · b+ b2 (by the Commutative Law)

= a2 + 2ab+ b2. (by definition)

Focus on the logic, and not the algebraic manipulations. First, you should view this chain of equalities by
reading it in order. We are claiming that (a+ b)2 equals (a+ b) · (a+ b) in the first line. Then the second line
says that (a+ b) · (a+ b) equals (a+ b) · a+ (a+ b) · b by the Distributive Law. Following this is an assertion
that the third and fourth expressions are equal by the Commutative Law, etc. In the second line, notice
that a+ b is in particular some real number (call it x), and then by viewing a+ b also as the sum of two real
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numbers (playing the role of y and z), we can apply the Distributive Law. If you believe all of the steps,
then we have shown that for our completely arbitrary choice of a and b in R, the first and second expressions
are equal, the second and third expressions are equal, the third and fourth expressions are equal, etc. Since
equality is transitive (i.e. if x = y and y = z, then x = z), we conclude that (a + b)2 = a2 + 2ab + b2. We
have taken completely arbitrary a, b ∈ R, and verified the statement in question, so we can now assert that
the “For all” statement is true.

As a quick aside, now that we know that (a + b)2 = a2 + 2ab + b2 for all a, b ∈ R, we can use this fact
whenever we have two real numbers. We can even conclude that the statement

“For all a, b ∈ R, we have (2a+ 3b)2 = (2a)2 + 2(2a)(3b) + (3b)2”

is true. How does this follow? Consider completely arbitrary a, b ∈ R. We then have that 2a ∈ R and 3b ∈ R,
and thus we can apply our previous result to the two numbers 2a and 3b. We are not setting “a = 2a” or
“b = 3b” because it does not make sense to say that a = 2a if a is anything other than 0. We are simply
using the fact that if a and b are real numbers, then 2a and 3b are also real numbers, so we can insert
them in for the placeholder values of a and b in our result. Always think of the (arbitrary) choice of letters
used in “there exists” and “for all” statements as empty vessels that could be filled with any appropriate value.

We’ve discussed the basic idea behind proving that a “there exists” or a “for all” statement is true. How
do we we prove that such statements are false? The cheap answer is to prove that its negation is true! In
other words, if we want to prove that

“There exists a such that . . . ”

is false, we can instead prove that

“Not (There exists a such that . . . )”

is true. This sounds great, but now we have this Not in the front, so the statement as a whole is no longer a
“there exists” statement. However, to show that there does not exist an a with a certain property, we need
to show that every a fails to have that property. Thus, we can instead show that the statement

“For all a,we have Not (. . . )”

is true. For example, suppose that we want to show that the statement

“There exists a ∈ R such that a2 + 2a = −5”

is false. By the above discussion, we can instead show that

“Not (There exists a ∈ R such that a2 + 2a = −5)”

is true, which is the same as showing that

“For all a ∈ R,we have Not(a2 + 2a = −5)”

is true, which is the same as showing that

“For all a ∈ R,we have a2 + 2a 6= −5”

is true. In other words, we can move the negation past the “there exists” as long as we change it to a “for
all” when doing so. How can we show that this last statement is true? Consider an arbitrary a ∈ R. Notice
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that

a2 + 2a = (a2 + 2a+ 1)− 1

= (a+ 1)2 − 1

≥ 0− 1 (because squares of reals are nonnegative)

= −1.

We have shown that given any arbitrary a ∈ R, we have a2 +2a ≥ −1, and hence a2 +2a 6= −5. We conclude
that the statement

“For all a ∈ R,we have a2 + 2a 6= −5”

is true, and hence the statement

“There exists a ∈ R with a2 + 2a = −5”

is false. Can you see a way to solve this problem using Calculus?

Similarly, if we want to prove that

“For all a, we have . . . ”

is false, then we can instead show that

“Not (For all a, we have . . . )”

is true, which is the same as showing that

“There exists a such that Not (. . . )”

is true. In general, we can move a Not past one of our two quantifiers at the expense of flipping the quantifier
to the other type.

Life becomes more complicated when a mathematical statement involves both types of quantifiers in an
alternating fashion. For example, consider the following two statements:

1. “For all m ∈ N, there exists n ∈ N such that m < n”.

2. “There exists n ∈ N such that for all m ∈ N, we have m < n”.

At first glance, these two statements appear to be essentially the same. After all, they both have “for all
m ∈ N”, both have “there exists n ∈ N”, and both end with the expression “m < n”. Does the fact that
these quantifiers appear in different order matter?

Let’s examine the first statement more closely. Notice that it has the form “For all m ∈ N . . . ”. In order
for this statement to be true, we want to know whether we obtain a true statement whenever we plug in a
particular natural number for m in the “. . . ” part. In other words, we’re asking if all of the infinitely many
statements:

• “There exists n ∈ Z such that 0 < n”.

• “There exists n ∈ Z such that 1 < n”.

• “There exists n ∈ Z such that 2 < n”.

• “There exists n ∈ Z such that 3 < n”.
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• . . .

are true. Looking through each of these, it does indeed appear that they are all true: We can use n = 1
in the first one, then n = 2 in the second, etc. However, there are infinitely many statements, so we can’t
actually check each one in turn and hope to finish. We need a general argument that works no matter which
value m takes. Now given any arbitrary m ∈ N, we can verify that by taking n = m + 1, we obtain a true
statement. Here is how we would write this argument up formally.

Proposition 1.1. For all m ∈ N, there exists n ∈ N such that m < n.

Proof. Let m ∈ N be arbitrary. We then have that m+1 ∈ N and m < m+1, so we have shown the existence
of an n ∈ N with m < n (namely m+ 1). Since m ∈ N was arbitrary, the result follows.

Let’s pause to note a few things about this argument. First, we’ve labeled the statement as a proposition.
By doing so, we are making a claim that the statement to follow is a true statement, and that we will be pro-
viding a proof. Alternatively, we sometimes will label a statement as a “theorem” instead of a “proposition”
if we want to elevate it to a position of prominence (typically theorems say something powerful, surprising,
or incredibly useful). In the proof, we are trying to argue that a “for all” statement is true, so we start by
taking an arbitrary element of N. Although this m is arbitrary, it is not varying. Instead, once we take an
arbitrary m, it is now one fixed number that we can use in the rest of the argument. For this particular but
arbitrary m ∈ N, we now want to argue that a certain “there exists” statement is true. In order to do this,
we need to exhibit an example of an n that works, and verify it for the reader. Since we have a fixed m ∈ N
in hand, the n that we pick can depend on that m. In this case, we simply verify that m + 1 works as a
value for n. As in the examples given above, we do not need to explain why we chose to use m + 1, only
that the resulting statement is true. In fact, we could have chose m+ 2, or 5m+ 3, etc. In the last line, we
point out that since m ∈ N was arbitrary, and we succeeded in verifying the part inside the “for all” for this
m, we can assert that the “for all” statement is true. Finally, the square box at the end of the argument
indicates that the proof is over, and so the next paragraph (i.e. this one) is outside the scope of the argument.

Let’s move on to the second of our two statements above. Notice that it has the form “There exists
n ∈ N . . . ”. In order for this statement to be true, we want to know whether we can find one value for n
such that we obtain a true statement in the “. . . ” part after plugging it in. In other words, we’re asking if
any of the infinitely many statements

• “For all m ∈ N, we have m < 0”.

• “For all m ∈ N, we have m < 1”.

• “For all m ∈ N, we have m < 2”.

• “For all m ∈ N, we have m < 3”.

• . . .

is true. Looking through each of these, it appears that every single one of them is false, i.e. none of them are
true. Thus, it appears that the second statement is false. We can formally prove that it is false by proving
that its negation is true. Applying our established rules for how to negate across quantifiers, to show that

“Not (There exists n ∈ N such that for all m ∈ N, we have m < n)”

is true, we can instead show that

“For all n ∈ N, Not (for all m ∈ N, we have m < n)”
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is true, which is same as showing that

“For all n ∈ N, there exists m ∈ N with Not(m < n)”

is true, which is the same as showing that

“For all n ∈ N, there exists m ∈ N with m ≥ n”.

is true. We now prove that this final statement is true, which is the same as showing that our original second
statement is false.

Proposition 1.2. For all n ∈ N, there exists m ∈ N with m ≥ n.

Proof. Let n ∈ N be arbitrary. Notice that n ≥ n is true, so we have shown the existence of an m ∈ N with
m ≥ n. Since n ∈ N was arbitrary, the result follows.

In fact, if we think about it for a moment, we did not have to write a new formal proof here. We wanted
to prove that

“For all n ∈ N, there exists m ∈ N with m ≥ n”

is true. In Proposition 1.1, we showed that

“For all m ∈ N, there exists n ∈ N with m < n”

is true. Now remember that the letters are simply placeholders, so we can restate Proposition 1.1 as

“For all n ∈ N, there exists m ∈ N with n < m”

which is the same as
“For all n ∈ N, there exists m ∈ N with m > n”.

Since we know this is true, we can immediately conclude that the weaker statement in Proposition 1.2 is
true as well.

In general, consider statements of the following two types:

1. For all a, there exists b such that . . . .

2. There exists b such that for all a, we have . . . .

Let’s examine the difference between them in a more informal way. Think about a game with two players
where Player I goes first. For the first statement to be true, it needs to be the case that no matter how
Player I moves, Player II can respond in such a way so that . . . happens. Notice in this scenario Player
II’s move can depend on Player I’s move, i.e. the value of b can depend on the value of a. For the second
statement to be true, it needs to be the case that Player I can make a move so brilliant that no matter how
Player II responds, we have that . . . happens. In this scenario, b needs to be chosen first without knowing
a, so b can not depend on a in any way.

Finally, let’s discuss one last construct in mathematical statements, which is an “if...then...” clause. We
call such statements implications, and they naturally arise when we want quantify only over part of a set.
For example, the statement

“For all a ∈ R, we have a2 − 4 ≥ 0”

is false because 0 ∈ R and 02 − 4 < 0. However, the statement

“For all a ∈ R with a ≥ 2, we have a2 − 4 ≥ 0”
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is true. Instead of coupling the condition “a ≥ 2” with the “for all” statement, we can instead write this
statement as

“For all a ∈ R, (If a ≥ 2, then a2 − 4 ≥ 0)”.

We often write this statement in shorthand by dropping the “for all” as:

“If a ∈ R and a ≥ 2, then a2 − 4 ≥ 0.”

One convention, that seems quite strange initially, arises from this. Since we want to allow “if...then...”
statements, we need to assign truth values to them because every mathematical statement should either
be true or false. If we plug the value 3 for a into this last statement (or really past the “for all” in the
penultimate statement), we arrive at the statement

“If 3 ≥ 2, then 32 − 4 ≥ 0”

which we naturally say is true because both the “if” part and the “then” part are true. However, it’s less
clear how we should assign a truth value to

“If 1 ≥ 2, then 12 − 4 ≥ 0”

because both the “if” part and the “then” part are false. We also have an example like

“If − 5 ≥ 2, then (−5)2 − 4 ≥ 0”

where the “if” part is false and the “then” part is true. In mathematics, we make the convention that an
“if...then...” statement is false only when the “if” part is true and the “then” part is false. Thus, these last
two examples we declare to be true. The reason why we do this is be consistent with the intent of the “for
all” quantifier. In the example

For all a ∈ R, (If a ≥ 2, then a2 − 4 ≥ 0),

we do want any value of a with a < 2 to have any effect at all on the truth value of the “for all” state-
ment. Thus, we want the parenthetical statement to be true if the “if” part is false. In general, given two
mathematical statements P and Q, we define the following.

• If P is true and Q is true, we say that “If P , then Q” is true.

• If P is true and Q is false, we say that “If P , then Q” is false.

• If P is false and Q is true, we say that “If P , then Q” is true.

• If P is false and Q is false, we say that “If P , then Q” is true.
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