
Functions

Joseph R. Mileti

January 30, 2015

1 Functions

We’re all familiar with the concept of a function f from Calculus, but often some . In that context, functions
are often given by “formulas”, such as f(x) = x4−4x3+2x−1. However, we also encounter piecewise-defined
functions like

f(x) =

{
x2 + 1 if x ≥ 2,

x− 1 if x < 2

or functions like f(x) = |x|, which is really piecewise defined as

f(x) =

{
x if x ≥ 0,

−x if x < 0.

For an more interesting example of a piecewise defined function, consider

f(x) =

{
1 if x ∈ Q,

0 if x /∈ Q.

However, not all functions in Calculus are defined through formulas on pieces. For a simple example, the
function f(x) = sinx is not given by a formula, and in fact it is difficult to compute values of this function
with any accuracy using only basic operations like + and ·. In fact, we give this function the strange new
name of “sine” because we can not express it easily using more basic operations. The function f(x) = 2x is
easy to compute for x ∈ Z, but it’s actually nontrivial to compute and even define in general (after all, do
you remember the definition of 2π?). Even more fundamentally, the function f(x) =

√
x is also not really

given by a formula, because the definition, i.e. f(x) is the unique positive y with the property that y2 = x,
does not give us an easy way to compute it.

Beyond these fundamental functions that you encounter before Calculus, you learn more exotic ways
to define functions in Calculus. Given a function f , you learn how to define a new function f ′, called the
derivative of f , using a certain limit operation. Now in many cases, you can compute f ′ more easily using
facts like the Product Rule and the Chain Rule, but these rules do not always apply. Moreover, given any
continuous function g, we can define a new function f by letting

f(x) =

∫ x

0

g(t) dt.

In other words, f is defined as the “(signed) area of g so far” function, in that f(x) is defined to be the
(signed) area between the graph of g and the x-axis over the interval from 0 to x. Formally, f is defined as
a limit of Riemann sums. Again, in Calculus you learn ways to compute f(x) more easily in many special
cases using the Fundamental Theorem of Calculus. For example, if

f(x) =

∫ x

0

(3t2 + t) dt

1



then we can also compute f as

f(x) = x3 +
x2

2
,

while if

f(x) =

∫ x

0

sin t dt

then we can also compute f as
f(x) = 1− cosx.

However, not all integrals can be evaluated so easily. In fact, it turns out that the perfectly well-defined
function

f(x) =

∫ x

0

e−t
2

dt

can not be expressed through polynomials, exponentials, logs, and trigonometric functions using only oper-
ations like +, ·, and function composition. Of course, we can still approximate it using Riemann sums (or
Simpson’s Rule), and this is important for us to be able to do since this function represents the area under
a normal curve, which is essential in statistics.

If we move away from functions whose inputs and outputs are real numbers, we can think about other
interesting ways to define functions. For example, suppose we define a function whose inputs and outputs
are elements of R3 by letting f(~u) be the result of rotating ~u by 27o around the axis given by the line through
the origin and (1, 2, 3). This seems to be a well-defined function despite the fact that it is not clear how to
compute it (though we will learn how to compute it in time).

Alternatively, consider a function whose inputs and outputs are natural numbers by letting f(n) be the
number of primes less than or equal to n. For example, we have f(3) = 2, f(4) = 2, f(9) = 4, and f(30) = 10.
Although it is possible to compute this function, it’s not clear whether we can compute it quickly. In other
words, it’s not obvious if we can compute something like f(250) without a huge amount of work.

You also have some exposure to the concept of a function as it is used in computer programming. From
this perspective, a function is determined by a sequence of imperative statements or function compositions
as defined by a precise programming language. Since a computer is doing the interpreting, of course all such
functions can be computed in principle (or if your computations involve real numbers, then at least up to
good approximations). However, if you take this perspective, an interesting question arises. If we write two
different functions f and g that do not follow the same steps, and perhaps even act qualitatively differently
in structure, but they always produce the same output on the same input, should we consider them to be
the same function? We can even ask this question outside of the computer science paradigm. For example,
if we define f(x) = sin2 x + cos2 x and g(x) = 1, then should we consider f and g be the same function?

We need to make a choice about how to define a function in general. Intuitively, given two sets A and B,
a function f : A → B is an input-output “mechanism” that produces a unique output b ∈ B for any given
input a ∈ A. As we’ve seen, the vast majority of functions that we have encountered so far can be computed
in principle, so up until this point, we could interpret “mechanism” in an algorithmic and computational
sense. However, we want to allow as much freedom as possible in this definition so that we can consider
new ways to define functions in time. In fact, as you might see in later courses (like Automata, Formal
Languages, and Computational Complexity), there are some natural functions that are not computable even
in theory. As a result, we choose to abandon the notion of computation in our definition. By making this
choice, we will be able to sidestep some of the issues in the previous paragraph, but we still need to make a
choice about whether to consider the functions f(x) = sin2 x + cos2 x and g(x) = 1 to be equal.

With all of this background, we are now in a position to define functions as certain special types of sets.
Thinking about functions from this more abstract point of view eliminates the vague “mechanism” concept
because they will simply be sets. With this perspective, we’ll see that functions can be defined in any way
that a set can be defined. Our approach both clarifies the concept of a function and also provides us with
some much needed flexibility in defining functions in more interesting ways. Here is the formal definition.

2



Definition 1.1. Let A and B be sets. A function from A to B is a subset f of A×B with the property that
for all a ∈ A, there exists a unique b ∈ B with (a, b) ∈ f . Also, instead of writing “f is a function from A
to B”, we typically use the shorthand notation “f : A→ B”.

For example, let A = {2, 3, 5, 7} and let B = N = {0, 1, 2, 3, 4, . . . }. An example of a function f : A→ B
is the set

f = {(2, 71), (3, 4), (5, 9382), (7, 4)}.

Notice that in the definition of a function from A to B, we know that for every a ∈ A, there is a unique
b ∈ B such that (a, b) ∈ f . However, as this example shows, it may not be the case that for every b ∈ B,
there is a unique a ∈ A with (a, b) ∈ f . Be careful with the order of quantifiers!

We can also convert the typical way of defining a function into this formal set theoretic way. For example,
consider the function f : R→ R by letting f(x) = x2. We can instead define f by the set

{(x, y) ∈ R× R : y = x2}

or parametrically as
{(x, x2) : x ∈ R}

One side effect of our definition of a function is that we immediately obtain a nice definition for when two
functions f : A → B and g : A → B are equal because we have defined when two sets are equal. Given two
function f : A→ B and g : A→ B, if we unwrap our definition of set equality, we see that f = g exactly when
f and g have the same elements, which is precisely the same thing as saying that f(a) = g(a) for all a ∈ A.
In particular, the manner in which we describe functions does not matter so long as the functions behave
the same on all inputs. For example, if we define f : R→ R and g : R→ R by letting f(x) = sin2 x + cos2 x
and g(x) = 1, then we have that f = g because f(x) = g(x) for all x ∈ R.

Thinking of functions as special types of sets is helpful to clarify definitions, but is often awkward to work
with in practice. For example, writing (2, 71) ∈ f to mean that f sends 2 to 71 quickly becomes annoying.
Thus, we introduce some new notation matching up with our old experience with functions.

Notation 1.2. Let A and B be sets. If f : A→ B and a ∈ A, we write f(a) to mean the unique b ∈ B such
that (a, b) ∈ f .

For instance, in the above example of f , we can instead write

f(2) = 71, f(3) = 4, f(5) = 9382, and f(7) = 4

Definition 1.3. Let f : A→ B be a function.

• We call A the domain of f .

• We call B the codomain of f .

• We define range(f) = {b ∈ B : There exists a ∈ A with f(a) = b}.

Notice that given a function f : A→ B, we have range(f) ⊆ B, but it is possible that range(f) 6= B. For
example, in the above case, we have that the codomain of f is N, but range(f) = {4, 71, 9382}. In general,
given a function f : A → B, it may be very difficult to determine range(f) because we may need to search
through all a ∈ A.

For an interesting example of a function with a mysterious looking range, fix n ∈ N+ and define
f : {0, 1, 2, . . . , n − 1} → {0, 1, 2, . . . , n − 1} by letting f(a) be the remainder when dividing a2 by n. For
example, if n = 10, then we have

f(0) = 0 f(1) = 1 f(2) = 4 f(3) = 9 f(4) = 6
f(5) = 5 f(6) = 6 f(7) = 9 f(8) = 4 f(9) = 1

3



Thus, for n = 10, we have range(f) = {0, 1, 4, 5, 6, 9}. This simple but strange looking function has many
interesting properties. Given a reasonably large number n ∈ N, it looks potentially difficult to determine
whether an element is in range(f) because we might need to search through a huge number of inputs to
see if a given output actually occurs. If n is prime, then it turns out that there are much faster ways to
determine if a given element is in range(f) (see Number Theory). However, it is widely believed (although
we do not currently have a proof!) that there is no efficient method to do this when n is the product of two
large primes, and this is the basis for some cryptosystems (Goldwasser-Micali) and pseudo-random number
generators (Blum-Blum-Shub).

Definition 1.4. Suppose that f : A→ B and g : B → C are functions. The composition of g and f , denoted
g ◦ f , is the function g ◦ f : A→ C defined by letting (g ◦ f)(a) = g(f(a)) for all a ∈ A.

Notice that in general we have f ◦ g 6= g ◦ f even when both are defined! If f : R → R is f(x) = x + 1
and g : R→ R is g(x) = x2, then

(f ◦ g)(x) = f(g(x))

= f(x2)

= x2 + 1

while

(g ◦ f)(x) = g(f(x))

= g(x + 1)

= (x + 1)2

= x2 + 2x + 1.

Notice then that (f ◦g)(1) = 12 +1 = 2 while (g ◦f)(1) = 12 +2 ·1+1 = 4. Since we have found one example
of an x ∈ R with (f ◦ g)(x) 6= (f ◦ g)(x), we conclude that f ◦ g 6= g ◦ f . It does not matter that there do
exist some values of x with (f ◦ g)(x) = (f ◦ g)(x) (for example, this is true when x = 0). Remember that
two functions are equal precisely when they agree on all inputs, so to show that the two functions are not
equal it suffices to find just one value where they disagree (again remember that the negation of a “for all”
statement is a “there exists” statement).

Proposition 1.5. Let A,B,C,D be sets. Suppose that f : A→ B, that g : B → C, and that h : C → D are
functions. We then have that (h◦g)◦f = h◦ (g ◦f). Stated more simply, function composition is associative
whenever it is defined.

Proof. Let a ∈ A be arbitrary. We then have

((h ◦ g) ◦ f)(a) = (h ◦ g)(f(a))

= h(g(f(a)))

= h((g ◦ f)(a))

= (h ◦ (g ◦ f))(a),

where each step follows by definition of composition. Therefore ((h◦g)◦f)(a) = (h◦ (g ◦f))(a) for all a ∈ A.
It follows that (h ◦ g) ◦ f = h ◦ (g ◦ f).

Definition 1.6. Let A be a set. The function idA : A→ A defined by idA(a) = a for all a ∈ A is called the
identity function on A.

4



We call this function the identity function because it leaves other functions alone when we compose with
it. However, we have to be careful that we compose with the identity function on the correct set and the
correct side.

Proposition 1.7. For any function f : A→ B, we have f ◦ idA = f and idB ◦ f = f .

Proof. Let f : A→ B be an arbitrary function.

• We first show that f ◦ idA = f . Let a ∈ A be arbitrary. We have

(f ◦ idA)(a) = f(idA(a)) (by definition of composition)

= f(a)

Since a ∈ A was arbitrary, it follows that f ◦ idA = f .

• We now show that idB ◦ f = f . Let a ∈ A be arbitrary. We have

(idB ◦ f)(a) = idB(f(a)) (by definition of composition)

= f(a) (because f(a) ∈ B)

Since a ∈ A was arbitrary, it follows that idB ◦ f = f .

As we’ve mentioned, the key property of a function f : A → B is that every input element from A
produces a unique output element from B. However, this does not work in reverse. Given b ∈ B, it may be
the case that b is the output of zero, one, or many elements from A. We give special names to the types of
functions where we have limitations for how often elements b ∈ B actually occur as an output.

Definition 1.8. Let f : A→ B be a function.

• We say that f is injective (or one-to-one) if whenever a1, a2 ∈ A satisfy f(a1) = f(a2), we have
a1 = a2.

• We say that f is surjective (or onto) if for all b ∈ B, there exists a ∈ A such that f(a) = b.

• We say that f is bijective if f is both injective and surjective.

Let’s take a moment to unpack these definitions. First, saying that function f : A → B is surjective
is simply saying that every b ∈ B is hit at least once by an element a ∈ A. We can rephrase this using
Definition 1.3 by saying that f : A→ B is surjective exactly when range(f) = B.

The definition of injective is slightly more mysterious at first. Intuitively, a function f : A→ B is injective
if every b ∈ B is hit by at most one a ∈ A. Now saying this precisely takes a little bit of thought. After all,
how can we say “there exists at most one” because our “there exists” quantifier is used to mean that there
is at least one! The idea is to turn this around and not directly talk about b ∈ B at all. Instead, we want
to say that we never have a situation where we have two distinct elements a1, a2 ∈ A that go to the same
place under f . Thus, we want to say

“Not (There exists a1, a2 ∈ A with a1 6= a2 and f(a1) = f(a2))”.

We can rewrite this statement as

“For all a1, a2 ∈ A, we have Not(a1 6= a2 and f(a1) = f(a2))”,

which is equivalent to

5



“For all a1, a2 ∈ A, we have either a1 = a2 or f(a1) 6= f(a2)”

(notice that the negation of the “and” statement turned into an “or” statement). Finally, we can rewrite
this as the following “if...then...” statement:

“For all a1, a2 ∈ A, if a1 6= a2, then f(a1) 6= f(a2)”.

Looking at our statement here, it captures what we want to express perfectly because it says that distinct
inputs always go to distinct outputs, which exactly says no element of B is hit by 2 or more elements, and
hence that every element of B is hit by at most 1 element. Thus, we could indeed take this as our definition
of injective. The problem is that this definition is difficult to use in practice. To see why, think about how
we would argue that a given function f : A→ B is injective. It appears that we would want to take arbitrary
a1, a2 ∈ A with a1 6= a2, and argue that under this assumption we must have that f(a1) 6= f(a2). Now
the problem with this is that is very difficult to work with an expression involving 6= in ways that preserve
truth. For example, we have that −1 6= 1, but (−1)2 = 12, so we can not square both sides and preserve
non-equality. To get around this problem, we instead take the contrapositive of the statement in question,
which turns into our formal definition of injective:

“For all a1, a2 ∈ A, if f(a1) = f(a2), then a1 = a2”.

Notice that in our definition above, we simply replace the “for all... if... then...” construct with a “when-
ever...we have...” for clarity, but these are saying precisely the same thing, i.e. that whenever we have two
elements of A that happen to be sent to the same element of B, then in fact those two elements of A must
be the same. Although our official definition is slightly harder to wrap one’s mind around, it is much easier
to work with in practice. To prove that a given f : A → B is injective, we take arbitrary a1, a2 ∈ A with
f(a1) = f(a2), and use this equality to derive the conclusion that a1 = a2.

To recap the colloquial ways to understand these concepts, a function f : A → B is injective if every
b ∈ B is hit by at most one a ∈ A, and is surjective if every b ∈ B is hit by at least one a ∈ A. It follows
that a function f : A → B is bijective if every b ∈ B is hit by exactly one a ∈ A. These ways of thinking
about injective and surjective are great, but we need to be careful when proving that a function is injective
or surjective. Given a function f : A→ B, here is the general process for proving that it has one or both of
these properties:

• In order to prove that f is injective, you should start by taking arbitrary a1, a2 ∈ A that satisfy
f(a1) = f(a2), and then work forward to derive that a1 = a2. In this way, you show that whenever
two elements of A happen to go to the same output, then they must have been the same element all
along.

• In order to prove that f is surjective, you should start by taking an arbitrary b ∈ B, and then show
how to build an a ∈ A with f(a) = b. In other words, you want to take an arbitrary b ∈ B and fill in
the blank in f( ) = b with an element of A.

Here is an example.

Proposition 1.9. The function f : R→ R given by f(x) = 2x is bijective.

Proof. We need to show that f is both injective and surjective.

• We first show that f is injective. Let x1, x2 ∈ R be arbitrary with f(x1) = f(x2). We then have that
2x1 = 2x2. Dividing both sides by 2, we conclude that x1 = x2. Since x1, x2 ∈ R were arbitrary with
f(x1) = f(x2), it follows that f is injective.

6



• We next show that f is surjective. Let y ∈ R be arbitrary. Notice that y
2 ∈ R and that

f
(y

2

)
= 2 · y

2
= y

Thus, we have shown the existence of an x ∈ R with f(x) = y. Since y ∈ R was arbitrary, it follows
that f is surjective

Since f is both injective and surjective, it follows that f is bijective.

Notice that if we define g : Z → Z by letting g(x) = 2x, then g is injective by the same proof, but g is
not surjective because there does not exist m ∈ Z with f(m) = 1 (since this would imply that 2m = 1, so
1 would be even, a contradiction). Thus, changing the domain or codomain of a function can change the
properties of that function. We will have much more to say about injective and surjective functions in time.

7


